Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zabolotnii, S. W" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Wyznaczanie standardowej niepewności pomiarów o rozkładzie trapezowym metodą maksymalizacji wielomianu
Evaluation of the Uncertainty of Trapeze Distributed Measurements by the Polynomial Maximization Method
Autorzy:
Warsza, Z. L.
Zabolotnii, S. W.
Powiązania:
https://bibliotekanauki.pl/articles/277568.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
menzurand
estymata
odchylenie standardowe
rozkład trapezowy
kumulanty
metoda maksymalizacji wielomianu
measurand
estimate
standard deviation
trapezoidal distribution
cumulant
polynomial maximization method
Opis:
Omówiono w skrócie rodzaje estymatorów parametrów menzurandu wyznaczanych z próbek danych pomiarowych pobranych z populacji o rozkładzie trapezowym. Zaproponowano użycie metody maksymalizacji wielomianu stochastycznego o symbolu PMM jako niekonwencjonalnego sposobu wyznaczania estymatorów wartości i odchylenia standardowego menzurandu dla próbek o rozkładach niegaussowskich. Na przykładach próbek z symetrycznego rozkładu trapezowego Trap oszacowano niepewność standardową dla wartości średniej, środka rozpięcia i estymatora menzurandu obliczonego metodą wielomianową PMM z użyciem kumulantów, które wyznaczono z danych próbki za pośrednictwem momentów centralnych. Metodą symulacji Monte Carlo (MC) dokonano analizy porównawczej ocen wariancji obliczanej klasycznie ze wzorów rozkładu, wg Przewodnika GUM [1], dla środka rozpięcia i metodą PPM. W funkcji liczby danych próbki i stosunku podstaw trapezu określono granice najefektywniejszego obszaru dla każdej z metod.
The types of measurand parameter estimators derived from samples of measured data taken from the symmetrical trapezoidal population Trap are briefly discussed. A non-standard approach to finding estimates of the non-Gaussian distributions parameters based on the unconventional method of maximizing the stochastic polynomial (PMM) and using a moment-cumulant description of random variables is proposed. By means of multiple statistical tests of Monte Carlo method, the properties of polynomial estimators are investigated and an analysis of their accuracy is made with compare to estimates of the distributions with arithmetic mean or the mid-range as their centers. As a function of the number of sample data and the basis of trapeze ratio, the boundaries of the areas where these methods are most effective are determined. The PPM method has been proposed to use for determining estimated values of the standard deviation and uncertainties of measurand when distribution of the random errors population is a priori unknown and first few cumulants have to be find from the sample data.
Źródło:
Pomiary Automatyka Robotyka; 2017, 21, 4; 59-65
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymacja parametrów menzurandu dla danych z rozkładów niesymetrycznych metodą maksymalizacji wielomianu (PMM)
Estimation of measurand parameters for data from asymmetric distributions by polynomial maximization method (PMM)
Autorzy:
Warsza, Z. L.
Zabolotnii, S. W.
Powiązania:
https://bibliotekanauki.pl/articles/277748.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
estymator
rozkład niesymetryczny
wielomian stochastyczny
wartość średnia
wariancja
skośność
kurtoza
estimator
non-Gaussian model
stochastic polynomial
means value
variance
skewness
kurtosis
Opis:
Przedstawiono sposób wyznaczania estymatorów wartości i niepewności menzurandu niekonwencjonalną metodą maksymalizacji wielomianu stochastycznego (PMM) dla próbki danych pomiarowych pobranych z populacji modelowanej zmienną losową o rozkładzie niesymetrycznym. W metodzie PMM stosuje się statystykę wyższego rzędu i opis z użyciem momentów lub kumulantów. Wyznaczono wyrażenia analityczne dla estymatorów wartości i niepewności standardowej typu A menzurandu za pomocą wielomianu stopnia r = 2. Niepewność standardowa wartości menzurandu otrzymana metodą PPM zależy od skośności i kurtozy rozkładu. Jest ona mniejsza od średniej arytmetycznej wyznaczanej wg przewodnika GUM i bliższa wartości teoretycznej dla rozkładu populacji danych. Jeśli rozkład ten jest nieznany, to estymatory momentów i kumulantów wyznacza się z danych pomiarowych próbki. Sprawdzono skuteczność metody PMM dla kilku podstawowych rozkładów.
The non-standard method for evaluating estimators of the value and uncertainty type A for measurement data sampled from asymmetrical distributed with a priori partial description (unknown PDF) is presented. This method of statistical estimation is based on the mathematical apparatus of stochastic polynomials maximization and uses the higher-order statistics (moment & cumulant description) of random variables. The analytical expressions for finding estimates and analyze their accuracy to the degree of the polynomial r = 2 are obtained. It is shown that the uncertainty of estimates received for polynomial is generally less than the uncertainty of estimates obtained based on the mean (arithmetic average) according international guide GUM. Reducing the uncertainty of measurement depends on the skewness and kurtosis. On the basis of the Monte Carlo method carried out statistical modelling. Their results confirm the effectiveness of the proposed approach.
Źródło:
Pomiary Automatyka Robotyka; 2018, 22, 1; 49-56
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies