Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "GaP" wg kryterium: Temat


Wyświetlanie 1-12 z 12
Tytuł:
Concerning the Shock Sensitivities of Certain Plastic Bonded Explosives Based on Attractive Cyclic Nitramines
Autorzy:
Zeman, S.
Elbeih, A. E.
Hussein, A.
Elshenawy, T.
Pelikán, V.
Yan, Q-L.
Powiązania:
https://bibliotekanauki.pl/articles/358824.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
nitramines
gap test
PBX
sensitivity
performance
Opis:
Plastic bonded explosives (PBXs) based on ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (ε-HNIW), 1,3,5-trinitro-1,3,5-triazinane (RDX), β-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (β-HMX) and cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole (BCHMX) were prepared using a hydroxyl-terminated polybutadiene as a binder (HTPB) and cured with hexamethylene di-isocyanate (HMDI). Recently published data for analogous PBXs with a polyisobutylene binder (i.e. a C4 matrix) are also included. All of these PBXs were tested using the Small Scale Water Gap Test according to STANAG 4490, the results of which are directly proportional to the impact and friction sensitivities of the PBXs studied. Reciprocal ratios between the shock sensitivity of these PBXs and their performance were found using the volume heat of explosion as a variable; a semi-logarithmic analogue, using a representative of the detonation pressure (product ρD2) as a variable, has shown an opposite trend for three of these PBXs. A semi-logarithmic relationship between the shock sensitivity of the PBXs and the impact sensitivity of their pure nitramine fillers has confirmed the higher shock reactivity of the C4 PBXs filled with both technical ε-HNIW and RS-ε-HNIW, while for the HTPB PBXs filled with technical grade ε-HNIW, the shock sensitivity found was as expected. The shape and size of the particles should not be a reason for the increased resistance to shock of HMX-C4.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 4; 775-787
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of the synthesis of GAP-HTPB-GAP Liquid Copolymer
Autorzy:
Chmielarek, Michał
Maksimowski, Paweł
Cieślak, Katarzyna
Gołofit, Tomasz
Drozd, Hanna
Powiązania:
https://bibliotekanauki.pl/articles/1062796.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
HTPB
GAP
copolymerization
optimization
liquid energetic binder
Opis:
GAP and HTPB are polymers on which the copolymer obtained in our work is based. The following report indicates how to perform the polymerization reactions for these two polymers in order to obtain a copolymer that combines their individual positive physico-chemical properties. It demonstrates how the ratio of substrates and reaction conditions affect the polymer properties. It has been shown that increasing the amount of epichlorohydrin attached to HTPB significantly affects the copolymer viscosity. This has a later effect on polymer processing, as well as on the hydroxyl values being too low. This is important for the subsequent production of polyurethanes. Analysis of the results allows the reaction conditions to be designed so as to generate a polymer with the best properties. The reactions were carried out in two stages. The first stage was the connection of polyepichlorohydrin (PECH) to HTPB, and the second was azidation of the resultant PECH-HTPB-PECH copolymer. The influence of the amount of epichlorohydrin attached to HTPB on the copolymer properties (e.g. viscosity) was demonstrated. Analysis of the second stage, the preparation of the GAP-HTPB-GAP copolymer (by azidation of the PECH-HTPB-PECH copolymer), showed that the nitrogen content in the copolymer has a significant effect on the viscosity and heat of polymer combustion.
Źródło:
Central European Journal of Energetic Materials; 2020, 17, 4; 566-583
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A New Energetic Binder: Glycidyl Nitramine Polymer
Autorzy:
Betzler, F. M.
Hartdegen, V. A.
Klapötke, T. M.
Sproll, S. M.
Powiązania:
https://bibliotekanauki.pl/articles/358337.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
energetic polymer
glycidyl nitramine
GNAP
GAP
polyGLYN
Opis:
A new energetic glycidyl-based polymer containing nitramine groups (glycidyl nitramine polymer, GNAP) was synthesized using glycidyl azide polymer (GAP) as the starting material. The synthesis involved Staudinger azide-amine conversion, followed by carbamate protection of the amino group, nitration with nitric acid (100%) and trifluoroacetic anhydride and was concluded by deprotection with aqueous ammonia. The products obtained were characterized by elemental analysis and vibrational spectroscopy (IR). The energetic properties of GNAP were determined using bomb calorimetric measurements and calculated with the EXPLO5 V6.02 computer code, showing better values regarding the energy of explosion (ΔEU = −4813 kJ kg−1), the detonation velocity (VDet = 7165 m•s−1), as well as the detonation pressure (pCJ = 176 kbar), than the comparable polymers GAP and polyGLYN. The explosion properties were tested by impact sensitivity (IS), friction sensitivity (FS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and electrostatic discharge (ESD) equipment. The results revealed GNAP to be insensitive towards friction and electrostatic discharge, less sensitive towards impact (40 J) and a decomposition temperature (170 °C) in the range of polyGLYN.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 2; 289-300
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Reinforcement of the TNT System by a Newly-designed GAP-based Polyurethane-Urea: a Molecular Simulation Investigation
Autorzy:
Qian, W.
Shu, Y.
Ma, Q.
Li, H.
Wang, S.
Chen, X.
Powiązania:
https://bibliotekanauki.pl/articles/358512.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
TNT
GAP
polyurethane-urea
inter-molecular interaction
mechanical properties
Opis:
A glycidyl azide (GAP)-based polyurethane-urea (PUU) modifier used in the 1,3,5-trinitrotoluene (TNT)-based composite explosive was investigated by molecular simulation. Inter-molecular interactions were investigated using quantum chemistry calculation on the dimer of TNT and GAP-PUU, and attractive forces were found between the two molecules. The cohesive energy densities and the solubility parameters were obtained through molecular dynamics simulations combined with thermodynamic calculations on the TNT and GAP-PUU amorphous cell models, and the miscibility of the modifier in molten TNT was predicted to be good. The interaction energies and the mechanical properties were then obtained by molecular simulations and mechanical calculations on the solid-phase models of the GAP-PUU with TNT along three crystalline directions, and an improvement in the mechanical properties was predicted.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 2; 411-426
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on the Mechanical Properties and Curing Networks of Energetic GAP/TDI Binders
Autorzy:
Ma, S.
Li, Y.
Li, G.
Luo, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358300.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
glycidyl azide polymer (GAP)
curing networks
hydrogen bonding
entanglement
integrity
Opis:
This research focused on correlations between the macroscopic mechanical performance and microstructures of energetic binders. Initially a series of glycidyl azide polymer (GAP)/toluene diisocyanate (TDI) binders, catalyzed by a mixture of dibutyltin dilaurate (DBTDL) and triphenyl bismuth (TPB), was prepared. Uniaxial tensile testing, and low-field nuclear magnetic resonance and infrared spectroscopy were then used to investigate the mechanical properties, curing networks, and hydrogen bonding (H-bonds) of these binders. Additionally, a novel method based on the molecular theory of elasticity and the statistical theory of rubber elasticity was used to analyze the integrity of the networks. The results showed that the curing parameter R strongly influences the mechanical properties and toughness of the binders, and that a tensile stress (σm) of 1.6 MPa and an elongation (εm) of 1041% was observed with an R value of 1.6. The cross-linking density increased sharply with the curing parameter, but only modestly with an R value ≥ 1.8. The proportion of H-bonds formed by the imino groups increased with the R value and reached 72.61% at an R value of 1.6, indicating a positive correlation between the H-bonds and σm. Molecular entanglement was demonstrated to increase with R and to contribute dramatically to the mechanical performance. The integrity of these networks, evaluated by a correction factor (A), varies with R, and a network of the GAP/TDI binder with an R value of 1.6 is desirable.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 3; 708-725
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Studies on Sensitivity of Nitrate Ester Plasticized Hydroxyl Terminated Prepolymer Based Energetic Solid Rocket Propellants
Autorzy:
Bhowmik, D.
Sadavarte, V. S.
Charbhe, V. D.
Pande, S. M.
Powiązania:
https://bibliotekanauki.pl/articles/358663.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
sensitivity
impact
friction
card gap test
DDT test
SLSG test
Opis:
The sensitivities of energetic materials as well as advanced energetic solid propellants are invariably associated with the nature of the stimuli that are responsible for the initiation of their decomposition. Hence it is important to study the chemical processes involved with these decompositions. While assessing the potential application of new propellant formulations containing energetic materials, it is important to assess their sensitivity to the hazards involved during their handling, transport, storage and use. This paper reports the results of impact, friction, heat, spark and shock sensitivities of advanced high energy solid rocket propellant formulations based on nitrate ester plasticized, hydroxyl terminated prepolymer (SPB-255) as an energetic binder loaded with solid ingredients like ammonium perchlorate (AP), aluminium (Al) and cyclotetramethylenetetranitramine (HMX). The results of the small card gap test showed that they are more sensitive than a composite modified double base (CMDB) propellant, which in turn is more sensitive than double base (DB) as well as composite propellants. Deflagration to detonation transition (DDT) tests carried out for the advanced energetic propellant did not show any detonation phenomena. Trinitrotoluene (TNT) equivalence and super large scale gap (SLSG) tests have been carried out for the determination of hazard classification of the energetic solid rocket propellant. The requirements to achieve both higher performance in terms of improved energy (i.e., specific impulse, Isp) and reduced sensitivity for the same propellant composition are contradictory; one should be sacrificed for the other, within manageable limits.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 3; 605-620
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synthesis, Crystal Structure, and Properties of a Novel, Highly Sensitive Energetic, Coordination Compound: Iron (II) Carbohydrazide Perchlorate
Autorzy:
Liu, R.
Zhou, Z.
Qi, S.
Yang, L.
Wu, B.
Huang, H.
Zhang, T.
Powiązania:
https://bibliotekanauki.pl/articles/358343.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
iron (II) carbohydrazide perchlorate
energetic material
high
sensitivity
DFT
energy gap
Opis:
A single crystal of iron (II) carbohydrazide perchlorate [FeII (CHZ)3](ClO4)2 (FeCP), a novel, lead-free, energetic coordination compound, was synthesized and its structure determined by X-ray single crystal diffraction for the frst time. The crystal belongs to the monoclinic system P2(1)/n space group, with a = 1.0066(2) nm, b = 0.8458(2) nm, c = 2.1194(4) nm, β = 100.693(3)° and Z = 4. The central Fe(II) ion is coordinated to three bidentate carbohydrazide units through the carbonyl oxygen atom and an amino nitrogen atom, forming a six-coordinated, non-centrosymmetric complex cation. The thermal analyses by differential scanning calorimetry and thermogravimetry show that the onset temperature of thermal decomposition (152.7 °C) and the critical temperature of thermal explosion of FeCP (161.2 °C) are both much lower than those of other transition metal carbohydrazide perchlorate compounds, and also those of some other primary explosives in service. FeCP has a high enthalpy of combustion, as measured by oxygen bomb calorimetry. The impact, friction and fame sensitivity tests indicate that FeCP is extremely sensitive and hazardous. Unexpected explosions occurred even during the operational processes. In order to explore the intrinsic cause of these explosions, theoretical calculations of the orbital energies were performed based on DTF. These results reveal that the impact sensitivity is positively correlated with the energy gap between HOMO and LUMO: the smaller energy gap results in the higher impact sensitivity.
Źródło:
Central European Journal of Energetic Materials; 2013, 10, 1; 17-36
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
GAP/DNTF Based PBX Explosives: a Novel Formula Used in Small Sized Explosive Circuits
Autorzy:
An, C.
Wen, X.
Wang, J.
Wu, B.
Powiązania:
https://bibliotekanauki.pl/articles/358581.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
explosive circuits
GAP/DNTF based PBX explosives
thermal stability
mechanical sensitivity
propagation reliability
detonation velocity
Opis:
With 3,4-dinitrofurazanofuroxan (DNTF) and glycidyl azide polymer (GAP) as the main explosive and binder respectively, GAP/DNTF based PBX explosives were designed, prepared and used to fill the small groove of some explosive circuits. The formulation was: DNTF 85 wt.%, GAP 11 wt.%, 2,4-toluene diisocyanate (TDI) and other additives making up the final 4 wt.%. After the uncured slurry mixture was prepared by uniform mixing, a squeezing device was used to charge the circuit groove (dimensions less than 1 mm × 1 mm). Scanning electron microscope (SEM) results showed a fine charging effect. Differential Scanning Calorimetry (DSC) was used to determine the energy of activation (Ea) and the pre-factor (A) of GAP/DNTF and these were compared with those for raw DNTF. The influences and causes of it have been investigated. The experimental results for propagation reliability showed that when the dimensions of the linear groove were 0.8 mm × 0.8 mm, 0.7 mm × 0.7 mm, 0.6 mm × 0.6 mm or 0.5 mm × 0.5 mm, GAP/DNTF based PBX explosives can propagate explosion successfully. Furthermore, the H50 and friction sensitivity of GAP/DNTF based PBX explosives were obtained using the following mechanical sensitivity experiments. These properties are vital if GAP/DNTF based PBX explosives are to be applied in complex explosive circuits.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 2; 397-410
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of Curing Agents for Linear Difunctional Glycidyl Azide Polymer (GAP), with and without Isocyanate, for Binder Applications
Autorzy:
Agawane, N. T.
Soman, R. R.
Wagh, R. M.
Athar, J.
Talawar, M.
Powiązania:
https://bibliotekanauki.pl/articles/358647.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
energetic binder
glycidyl azide polymer (GAP)
isocyanate curing agent
non-isocyanate curing agent
insensitive munitions (IM)
Opis:
Glycidyl Azide Polymer (GAP) is one of the most potential energetic binders for rocket propellants and gas generator compositions. In the present paper GAP of molecular weight (Mn) ~2000 was cured with a mixture of di- and tri-isocyanates without a cross linker. The curing profile and time of curing was recorded using a rheometer. The minimum curing time was observed for samples cured with Desmodour N-100 alone, whereas the maximum curing time was observed for samples cured with a mixture of Desmodour N-100 and Isophorone Diisocyanate (IPDI) (1:1 w/w). It was observed that all of the samples cured well and were void or bubble free. The mechanical properties data showed that the tensile strength (TS) of GAP cured with Desmodour N-100 alone was 1.19 kgf/cm2, which is a minimum, while the maximum TS (3.66 kgf/cm2) was achieved with a mixture of N-100 and 4,4’methylenebis(phenylisocynate) (MDI). The percent elongation for a sample cured with Desmodour N-100 was 160, and was reduced to 64.27 when a mixture of MDI and N-100 was used. In order to study the curing of GAP without an isocyanate, GAP diol was cured with hexanediol di-acrylate. GAP was also cured with an alkyne-based curing agent i.e. bis-propargyl succinate (BPS), which showed improved curing. Comparative thermal studies of GAP cured with isocyanate and acrylate was carried out. Differential Scanning Calorimetry (DSC) and Simultaneous Thermal Analysis (STA) curves for all of the cured samples were recorded in order to study and compare the thermal decomposition behaviour of the cured GAP. Isocyanate cured GAP exhibited a single stage decomposition, with larger heat output. Acrylate cured GAP exhibited a two stage decomposition. Finally, a mixture of IPDI and Desmodour N-100 was selected for curing of GAP. Accordingly, curing was carried out and was tested in a small ballistic evaluation motor (BEM) to observe the combustion behaviour and burn rate. From the pressure-time profile it was found that this composition gave smooth burning with a pressure of ~3 kg/sec2 for 7 seconds of burn.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 1; 206-222
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The process of increasing the functionality of poly(glycidyl azide) GAP
Proces zwiększenia funkcyjności poli(azydku glicydylu) (GAP)
Autorzy:
Chmielarek, Michał
Nowosielska, Julia
Powiązania:
https://bibliotekanauki.pl/articles/27787769.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
GAP
poly(glycidyl azide)
PECH
polyepichlorohydrin
epoxidation
modification
functional groups
hydroxyl groups
poli(azydek glicydylu)
poliepichlorohydryna
epoksydacja
modyfikacja
grupy funkcyjne
grupy hydroksylowe
Opis:
Poly(glycidyl azide) (GAP) is a synthetic polymer with energetic properties due to the presence of an azide group in its structure. It is used in industry primarily as a component of binders for rocket fuel. Classically produced GAP has secondary hydroxyl groups, which react much more slowly with the crosslinking agents diisocyanates found in high-energy materials. It has been confirmed that methods can be used which modify the structure of GAP thereby obtaining a polymer with an increased number of functional groups. Furthermore, such processes produce a polymer with more desirable primary hydroxyl groups. Using such a polymer is economically advantageous and allows easier control of processes using GAP. Attempts were made to obtain such a modified polymer. The polymers obtained were subjected to FTIR analysis, viscosity measurements and hydroxyl group values.
Poli(azydek glicydylu) to syntetyczny polimer o właściwościach energetycznych, które zawdzięcza posiadaniu w swojej strukturze grupy azydkowej. Znajduje zastosowanie w przemyśle przede wszystkim jako składnik lepiszczy do paliw rakietowych. Klasycznie wytwarzany GAP posiada drugorzędowe grupy hydroksylowe dużo wolniej reagujące z występującymi w materiałach wysokoenergetycznych czynnikami sieciującymi – diizocyjanianami. Potwierdzono możliwość zastosowania metod, które pozwalają zmodyfikować strukturę GAP i uzyskać polimer ze zwiększoną ilością grup funkcyjnych. Ponadto w procesie tym wytwarzany jest polimer o bardziej pożądanych pierwszorzędowych grupach hydroksylowych. Używanie takiego polimeru jest korzystne ekonomicznie i pozwala na łatwiejszą kontrolę procesów z użyciem GAP. Podjęto próby otrzymania tak zmodyfikowanego polimeru. Otrzymane polimery poddano analizie FTIR, pomiaru lepkości i wartości grupy hydroksylowej.
Źródło:
Materiały Wysokoenergetyczne; 2022, 14; 93--106
2083-0165
Pojawia się w:
Materiały Wysokoenergetyczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Concerning the shock sensitivity of cyclic nitramines incorporated into a polyisobutylene matrix
Autorzy:
Pelikán, W.
Zeman, S.
Yan, Q. L.
Erben, M.
Elbeih, A.
Akštein, Z.
Powiązania:
https://bibliotekanauki.pl/articles/358036.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
BCHMX
β-HMX
RDX
ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
CL-20
gap test
impact
Opis:
Two types of plastic bonded explosives (PBXs) based on ε-2,4,6,8,10,12hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (ε-HNIW, CL-20), and PBXs based on 1,3,5-trinitro-1,3,5-triazinane (RDX), β-1,3,4,7-tetranitro-1,3,5,7-tetrazocane (β-HMX) and cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole (bicycloHMX, BCHMX) were prepared using a polyisobutylene binder with dioctylsebacate (DOS) as plasticizer, i.e. a C4 matrix. One version of the ε-HNIW PBX is a product with reduced sensitivity (RS-ε-HNIW). All these PBXs, referenced respectively as RS-ε-HNIW-C4, ε-HNIW-C4, RDX-C4, HMX-C4 and BCHMX-C4, were tested using the Small Scale Gap Test according to STANAG 4488. The results of the gap test on the PBXs with RDX, β-HMX and BCHMX correspond to the impact sensitivities of the original crystalline nitramines. This is not entirely valid for ε-HNIW. In other words, PBXs with RS-ε-HNIW cannot achieve as low a shock sensitivity as would be expected from the differences obtained from the impact sensitivities between RDX, β-HMX and BCHMX, on the one hand, and RS-εHNIW on the other. It is shown that the morphological stability of RS-ε-HNIW in the C4 matrix is insufficient. However, further development and use of RS-ε-HNIW as a filler of PBXs would seem to be both desirable and beneficial. Despite the relatively high impact sensitivity of crystalline BCHMX, the shock sensitivity of its analogous C4 PBX is already good, and comparable with that of RS-ε-HNIW.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 2; 219-235
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recent trends in research on energetic materials at Cambridge
Autorzy:
Proud, W. G.
Walley, S. M.
Williamson, D. M.
Collins, A. L.
Addiss, J. W.
Powiązania:
https://bibliotekanauki.pl/articles/358917.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
Differential Mechanical Thermal Analysis
DMTA
polymer bonded explosive
PBX
thermal properties
thermal diffusivity
thermal conductivity
green primers
green explosives
time-temperature equivalence
strain rate
EDC37
RDX
gap test
drop-weight
particle size distribution
Opis:
Recent work in our laboratory has established a time-temperature superposition law for a PBX. This was achieved by performing uniaxial compression testing over a wide range of strain rates and temperatures along with Differential Thermal Mechanical Analysis (DMTA). The classic WLF (Williams, Landel, Ferry) transform was found not to fit the shift factor needed to align the data whereas a simple log-linear fit did. The thermal properties (diffusivity, conductivity, heat capacity) of a PBX have been measured three different ways and found to agree (within experimental error) with the classic equation relating these three parameters. This gives us confidence that, for example, hot-spot ignition mechanisms of this class of energetic materials can be accurately modelled using their measured thermal properties. A modular instrumented testing facility has been designed and built to simulate and control the conditions experienced by novel heavy-metal-free (green) primers contained within ammunition. Physical data obtained from the facility, when compared with data from live fire tests, will give a greater understanding of which characteristics are important to functionality. As explosives are granular materials, the techniques developed for studying such materials are being applied to determine the effect of particle size distribution and shape on sensitivity.
Źródło:
Central European Journal of Energetic Materials; 2009, 6, 1; 67-102
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies