Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Singh, J." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Assay of the Insensitive High Explosive 3-Nitro-1,2,4-triazol-5-one (NTO) by Acid-Base Titration
Autorzy:
Nandi, A. K.
Singh, S. K.
Kunjir, G. M.
Singh, J.
Mandal, A. K.
Pandey, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/358351.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
NTO
purity
acid-base titration
HPLC
quality control
Opis:
The insensitive high explosive 3-nitro-1,2,4-triazol-5-one (NTO) is a weak acid (pKa 3.76) due to the labile N–H bond. The weakly acidic character of this compound is exploited for its assay by aqueous acid-base titration. The NTO sample was dissolved in water and the resultant solution was titrated against 0.07 N NaOH solution using phenolphthalein as indicator. Regular batch samples were assayed by this method and the results were compared with those obtained by the HPLC method. The aqueous acid-base titration method was found to be suitable for the quality control of the product.
Źródło:
Central European Journal of Energetic Materials; 2013, 10, 1; 113-122
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of Ammonium Sulfamate Nitration for the Preparation of Ammonium Dinitramide
Autorzy:
Mandal, A. K.
Kunjir, G. M.
Singh, J.
Adhav, S. S.
Singh, S. K.
Pandey, R. K.
Bhattacharya, B.
Lakshmi Kantam, M.
Powiązania:
https://bibliotekanauki.pl/articles/358022.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Opis:
The reaction kinetics for the preparation of ammonium dinitramide (ADN) is described. ADN is the ammonium salt of the dinitramide anion, and belongs to the group of inorganic oxidizers, mainly useful for energetic rocket propellant formulations, particularly for underwater applications. It is also a potential candidate to replace ammonium perchlorate (AP), in order to develop chlorine-free, green propellants. At HEMRL, ADN is prepared by the nitration of ammonium sulfamate (AS) using mixed acid, followed by hydrolysis, neutralization with ammonia (g) and rectification using solvent. The nitration of ammonium sulfamate (AS) is carried out at a subzero temperature of -40 ±1 °C. The yield of ADN is reliant on the formation of dinitramidic acid, an intermediate product formed during the hydrolysis step, and its stability is predominantly dependent upon the level of acidity and temperature of the reaction medium. Prior to these kinetics studies, process optimization of the nitration of ammonium sulfamate (AS) was performed and gave the final mole ratio of AS:HNO3:H2SO4. Since the nitration of AS is sensitive to temperature, the rate of reaction was studied at fixed temperatures with variation of time, keeping all of the other parameters, such as vessel volume, agitator speed, feed rate etc., constant. During these studies, predetermined quantities of ammonium sulfamate (AS) and mixed acid were allowed to react at a fixed temperature (-40 ±1 °C) for different reaction periods to generate the concentration profile of AS. Using this concentration profile, the reaction order and reaction rate constant were evaluated. In order to find the effect of temperature on the reaction rate and yield, experiments were conducted at other temperatures such as -30 and -50 °C. In the present studies, it was found that the optimum temperature of nitration is -40 ±1 °C and that the rate of reaction follows a pseudo second order process with rate constant 0.01113 (min-1)•(mol/L)-1. The reaction time evaluated for 55 to 60% conversion is about 70-80 minutes at -40 ±1 °C, based on this kinetics. The activation energy of AS nitration was found to be -4.6 kcal/mol, using the reaction kinetic data based on the temperature dependent rate equation derived from Arrhenius’s law.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 1; 83-97
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Studies on Curing of an Aluminized Ammonium Perchlorate Composite Propellant Based on Nitrile Butadiene Rubber Using a Quinol Ether of 1,4-Benzoquinone Dioxime
Autorzy:
Singh, Sudhir
Raveendran, Sidharth
Kshirsagar, Dhirendra R.
Gupta, Manoj
Bhongale, Chetan J.
Powiązania:
https://bibliotekanauki.pl/articles/27788068.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
dinitrosobenzene
nitrile butatadiene rubber
quinol ether
unsaturated rubber
Opis:
The isocyanate-based curing agents used for polyurethane are toxic and hygroscopic in nature. In the present work, an alternate approach was adopted, a reaction between the unsaturated rubber having an α-methylene hydrogen atom and a dinitrosobenzene (DNB) - generating system (quinol ether of 1,4-benzoquinone dioxime, QE) without a catalyst, thus generating a cured system. QE is a novel curing agent for propellant applications which imparts the necessary curing. The curing reaction between nitrile butatadiene rubber (NBR) and quinol ether (QE) was studied by FTIR and the results revealed the formation of anil groups (Ar–C=N). The anil group results from the reaction between NBR and DNB, generated on decomposition of QE. Propellant formulations were prepared with variation of the curing agent from 0.2 to 0.5%. The composition and rheological, mechanical, ballistic and thermal properties of the resulting cured systems were investigated. The viscosity and spreadability were suitable for casting. The tensile strength, modulus, and hardness show an increasing trend and the elongation decreases on varying QE from 0.2 to 0.5% in the propellant. However, all of the compositions showed nearly the same burning rate and pressure exponent. The QE based curing system is non-hygroscopic and has extremely low toxicity. The experimental results revealed that the proposed curing agent may find application in explosives and propellants.
Źródło:
Central European Journal of Energetic Materials; 2022, 19, 1; 18--38
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental Studies on a High Energy Sheet Explosive Based on RDX and Bis(2,2-dinitropropyl) Formal/Acetal (BDNPF/A)
Autorzy:
Jangid, S. K.
Singh, M. K.
Solanki, V. J.
Pandit, G.
Nath, T.
Sinha, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/358136.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
sheet explosive
polyurethane
explosive reactive armour
BDNPF/A
RDX
Opis:
A plastic bonded explosive (PBX) in the form of a sheet explosive was formulated with 1,3,5-trinitro-1,3,5-triazinane (RDX) dispersed in a polymeric matrix of a thermoplastic linear polyurethane and a 50/50 wt.% eutectic mixture of energetic plasticizers, viz., bis(2,2-dinitropropyl)formal (BDNPF) and bis(2,2-dinitropropyl)acetal (BDNPA) was used to increase the performance of the sheet explosive in terms of its velocity of detonation (VOD). The sheet explosives were prepared by a rolling process. Natural rubber (ISNR-5) based sheet explosive was taken as the standard composition. The study showed that the BDNPF/A based sheet explosive has a velocity of detonation of 7850 m/s, which is about 900 m/s higher than the standard composition. Thermal analysis of the sheet explosive formulations was performed using differential scanning calorimetry (DSC).
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 3; 557-566
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies