Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Li, S" wg kryterium: Autor


Tytuł:
Measurement of the Heat of Reaction of Polytetrafluoroethylene/Aluminum Composites Based on Laser Initiation
Autorzy:
Li, S.
Wu, Y.
Lin, Q.
Huang, C.
Yang, S.
Li, J.
Powiązania:
https://bibliotekanauki.pl/articles/358195.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
reactive materials
PTFE/Al composites
heat of reaction
laser initiation
Opis:
Polytetrafluoroethylene/aluminum (PTFE/Al) composites are reactive materials which can release energy due to exothermic chemical reactions initiated under shock loading conditions. In order to accurately measure the potential maximum heat of reaction of PTFE/Al composites in an inert atmosphere, we propose in this paper a heat of reaction measurement system based on laser initiation. Our results show that the measurement system successfully initiates the chemical reaction between PTFE and Al in an argon atmosphere. The comparison between theoretical calculations and experimental data demonstrates that our measurement method is highly accurate and exhibits excellent consistency. Thus, the heat of reaction measurement system based on laser initiation is applicable for measuring the heat of reaction of PTFE/Al composites and also other complicated reactive materials.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 3; 534-546
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermally Induced Polymorphic Transformation of Hexanitrohexaazaisowurtzitane (HNIW) Investigated by in-situ X-ray Powder Diffraction
Autorzy:
Liu, Y.
Li, S.
Wang, Z.
Xu, J.
Sun, J.
Huang, H.
Powiązania:
https://bibliotekanauki.pl/articles/358065.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
HNIW
polymorphism
in situ X-ray diffraction
phase transition
heat stimulation
Opis:
The ε→γ phase transition of HNIW induced by heat was investigated with in situ X-ray powder diffraction (PXRD). The effects of purity, particle size, insensitive additives and the time of isothermal heat treatment on the phase transition were evaluated. It was found that the phase transition is irreversible with changes in temperature, and the two phases can coexist in a certain temperature range. Moreover, the initial phase transition temperature increases with increasing purity and decreasing particle size of HNIW, and thus with the approximate crystal density. The addition of graphite and paraffin wax to HNIW as insensitive additives leads to a decrease in the initial phase transition temperature, but the addition of TATB does not affect the initial phase transition temperature. Thus, TATB is a suitable insensitive additive. Moreover, at the critical temperature, the isothermal time determined the efficiency of the ε- to γ-phase transition. This work lays the foundations for the choice of molding technologies, performance test methods, ammunition storage options, as well as the manufacture of HNIW-based explosive formulations.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 4; 1023-1037
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation on Stripping-down TNT from Waste Munitions by Supercritical CO2 Fluid Extraction under Low Temperature Conditions
Autorzy:
Yang, T.-M.
Li, J.-S.
Su, C.-S.
Lu, K.-T.
Yeh, T.-F.
Powiązania:
https://bibliotekanauki.pl/articles/358681.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
treatment of waste munitions
supercritical fluid extraction technique
TNT
stripping-down
low temperature conditions
Opis:
The traditional methods of waste munitions treatment are expensive and also have potential risks during the treatment process. The supercritical fluid extraction technique has been a rapidly developing technique in the chemical industry in recent years. CO2 is used as the solvent, which has some advantages, such as low pollution, low cost, good chemical stability and can be operated under low temperature conditions. This research explored the feasibility of reclaiming TNT from waste munitions by supercritical CO2 fluid extraction. It was found interestingly that the melting point of TNT can be lowered in supercritical CO2 fluid. Therefore, the melting process of TNT was observed under different temperature and pressure conditions to determine the best operating conditions for stripping-down TNT from waste munitions. Afterwards, simulated warheads with weight loadings of 60 g, 500 g and 1 kg of TNT were prepared and stripping-down tests from the simulated warheads were carried out using supercritical CO2 fluid at temperatures lower than the normal melting point of TNT. The results showed that TNT could be completely removed from the simulated warheads and the optimum operating conditions were determined as 55 °C and 25 MPa. This study will contribute to the feasibility evaluation of stripping-down TNT-based high explosives.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 1; 191-205
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on the Mechanical Properties and Curing Networks of Energetic GAP/TDI Binders
Autorzy:
Ma, S.
Li, Y.
Li, G.
Luo, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358300.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
glycidyl azide polymer (GAP)
curing networks
hydrogen bonding
entanglement
integrity
Opis:
This research focused on correlations between the macroscopic mechanical performance and microstructures of energetic binders. Initially a series of glycidyl azide polymer (GAP)/toluene diisocyanate (TDI) binders, catalyzed by a mixture of dibutyltin dilaurate (DBTDL) and triphenyl bismuth (TPB), was prepared. Uniaxial tensile testing, and low-field nuclear magnetic resonance and infrared spectroscopy were then used to investigate the mechanical properties, curing networks, and hydrogen bonding (H-bonds) of these binders. Additionally, a novel method based on the molecular theory of elasticity and the statistical theory of rubber elasticity was used to analyze the integrity of the networks. The results showed that the curing parameter R strongly influences the mechanical properties and toughness of the binders, and that a tensile stress (σm) of 1.6 MPa and an elongation (εm) of 1041% was observed with an R value of 1.6. The cross-linking density increased sharply with the curing parameter, but only modestly with an R value ≥ 1.8. The proportion of H-bonds formed by the imino groups increased with the R value and reached 72.61% at an R value of 1.6, indicating a positive correlation between the H-bonds and σm. Molecular entanglement was demonstrated to increase with R and to contribute dramatically to the mechanical performance. The integrity of these networks, evaluated by a correction factor (A), varies with R, and a network of the GAP/TDI binder with an R value of 1.6 is desirable.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 3; 708-725
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An investigation of the preparation and performance of microcellular combustible material
Autorzy:
Yang, W.
Li, Y.
Ying, S.
Powiązania:
https://bibliotekanauki.pl/articles/358391.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
microcellular combustible material
supercritical CO2
pressure quench method
vulnerability behaviour
closed vessel test
Opis:
Microcellular combustible materials, based on poly(methyl methacrylate) (PMMA) bonded RDX, were fabricated by the pressure quench method using supercritical CO2. After foaming, the bulk density, porosity, expansion ratio and cell density were analyzed. Scanning Electron Microscopy (SEM) has also been used to investigate the influence of the foaming conditions (temperature, saturation pressure and depressurization time) and the RDX ratio on the porous structure. The skin-core structure was also observed after the pressure quench process. The mechanical sensitivities and burning performance were investigated by the friction sensitivity test, the impact sensitivity test and the closed vessel test, respectively.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 2; 257-269
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Light Effect in Semiconductor Bridge Plasma Ignition
Autorzy:
Zhang, L.
Li, N.
Wan, Z.
Zhu, S.
Powiązania:
https://bibliotekanauki.pl/articles/358252.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
SCB plasma ignition
non-heat effect
light effect
free radicals
Opis:
Heat is considered to play an important role in Semiconductor Bridge (SCB) plasma ignition. Nevertheless, in this paper a non-heat effect is reported for SCB ignition of primary explosives. An initial comparison showed that there is no reasonable correlation between the ease of plasma ignition and the 5-s explosion temperature. Meanwhile the addition of Pb3O4 was found to make lead styphnate (LS) more active to SCB plasma ignition whereas the heat decomposition of this mixture was not accelerated. In terms of the phenomena mentioned above and the response of primary explosives to SCB plasma, we propose an effect of light in SCB plasma ignition. The free radical concentration change indicates that light enhances the activity of primary explosives in SCB plasma ignition. Regarding the mixture of LS and Pb3O4, the additive itself does not make LS sensitive to the SCB plasma. However, the supplement makes LS active under light exposure. As a result, the effect of light on SCB plasma ignition was confirmed by the experiments conducted in this study. This paper provides a new understanding of SCB plasma ignition from the viewpoint of explosives, which is of importance for the design of SCBs.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 4; 996-1006
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study on the Initiation Capacities of Conical Ring Booster Pellets
Autorzy:
Hu, L.
Hu, S.
Cao, X.
Li, J.
Powiązania:
https://bibliotekanauki.pl/articles/358594.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
booster pellet
main charge
initiation capacity
numerical simulation
optimization
Opis:
The insensitive main charge explosive is becoming an important part of modern weapon development. Insensitive main charge explosives generally have a high critical initiation pressure. The detonation pressure of a traditional cylindrical booster pellet is constant at a specific density and consequently has insufficient energy output to reliably initiate an insensitive main charge explosive. To ensure that this requirement could be achieved, the conical ring booster pellet was designed and optimized. Eight-point-synchronous explosive circuits were designed as appropriate to the sizes of the four booster pellets. The initiation processes of the four conical booster pellets equipped with the eight-point circuit were simulated using ANSYS/LY-DYNA software. The experimental measurements were performed in order to test the initiation capacities of these conical booster pellets. The results demonstrated that their initiation capacities are much better than the initiation capacity of a cylindrical booster pellet. The optimum size of the conical ring booster pellet is when the ratio of the inner to the upper diameter is 0.52, the ratio of the inner to the lower diameter is 0.44, and the ratio of the height to the lower diameter is 0.50.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 3; 335-348
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Three Insensitive Energetic Co-crystals of 1-Nitronaphthalene, with 2,4,6-Trinitrotoluene (TNT), 2,4,6-Trinitrophenol (Picric Acid) and D-Mannitol Hexanitrate (MHN)
Autorzy:
Hong, D.
Li, Y.
Zhu, S.
Zhang, L.
Pang, C.
Powiązania:
https://bibliotekanauki.pl/articles/1063066.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
co-crystal
insensitive energetic material
crystal structure
explosive properties
Opis:
Co-crystallization is proposed as an effective method to alter the physicochemical properties of energetic materials, e.g. density, sensitivity and solubility. As reported in this paper, it was found that 1-nitronaphthalene could form cocrystals with TNT, picric acid and MHN in a 1:1 molecular ratio. The sensitivity and thermal stability of the 1-nitronaphthalene co-crystals was greatly improved compared with that of pure TNT, picric acid and MHN. In addition, the melting points of TNT, picric acid and MHN were lowered through co-crystallization with 1-nitronaphthalene. The electrostatic potential surface of 1-nitronaphthalene, calculated by the DFT method, showed that the electron-rich 1-nitronaphthalene has a tendency to be a proton donor and to co-crystallize with other energetic materials. The structures of the co-crystals of 1-nitronaphthalene with TNT and picric acid were characterized by single crystal X-ray diffraction (SXRD). The 1-nitronaphthalene/MHN co-crystal was studied by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and FTIR.
Źródło:
Central European Journal of Energetic Materials; 2015, 12, 1; 47-62
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dft investigation of a high energy density polynitro compound, 2,2’-Bis(trinitromethyl)-5,5’-azo-1,2,3,4- tetrazole
Autorzy:
Lin, H.
Zhu, S. G.
Chen, P. Y.
Li, K.
Li, H. Z.
Peng, X. H.
Powiązania:
https://bibliotekanauki.pl/articles/358030.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
polynitro
electronic structure
thermodynamic properties
crystal structure
detonation performance
stability
Opis:
A novel polynitro compound, 2,2’-bis(trinitromethyl)-5,5’-azo- 1,2,3,4-tetrazole, was designed and investigated at the DFT-B3LYP/6-31G(d) level. Its properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure, were predicted. This compound is most likely to crystallize in the P21 space group, and the corresponding cell parameters are Z = 2, a = 5.46 Å, b = 9.72 Å, c = 14.05 Å, α = 90°, β = 90°, γ = 90°. In addition, the detonation velocity and pressure were also estimated by using the empirical Kamlet-Jacobs equations, and were predicted to be 8.28 km/s and 31.61 GPa respectively. The oxygen balance of this compound is +13.79%, which indicates that it could serve as an oxidizer. Bond dissociation energy calculations show that the C(13)-N(21)O2 and C(14)-N(30)O2 bonds are the locations of thermal decomposition and that this compounds meets the thermal stability requirements as an exploitable explosive. Keywords: polynitro, electronic structure, thermodynamic properties, crystal structure, detonation performance, stability.
Źródło:
Central European Journal of Energetic Materials; 2013, 10, 3; 325-338
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Controlled Synthesis and Application of Nano-energetic Materials Based on the Copper Oxide/Al System
Autorzy:
He, S.
Chen, J.
Yang, G.
Qiao, Z.
Li, J.
Powiązania:
https://bibliotekanauki.pl/articles/358254.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
nanoenergetic material
CuO/Al
laser ignition
plate-like
hollow sphere
Opis:
Nanothermite composites containing metal oxide and metal fuel are attracting attention due to their outstanding combustion characteristics. The morphology of metal oxide is important for the performance of nanothermite composites. In this paper, branch-, plate-, sphere-, and hollow sphere-like CuO nano/microstructures were synthesized via a facile hydrothermal process. The CuO/Al based nanothermites were prepared via ultrasonic mixing of the asobtained CuO products and nano-Al. The combustion behaviour of CuO/Al based nanothermites was analyzed by DSC and laser ignition. This study shows that this nanoscale mixing resulted in a large interfacial contact area and low diffusional resistance between the fuel and the oxidizer, and the reaction reflects large energy and laser ignition sensitivity.
Źródło:
Central European Journal of Energetic Materials; 2015, 12, 1; 129-144
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fabrication of Nano- and Micron- Sized Spheres of CL-20 by Electrospray
Autorzy:
Yan, S.
Li, M.
Sun, L.
Jiao, Q.
Huang, R.
Powiązania:
https://bibliotekanauki.pl/articles/358652.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
energetic materials
explosives
CL-20
electrospray
spherical particles
Opis:
The application of hexanitrohexaazaisowurtzitane (CL-20) in energetic materials will be expanded by its use as superfine particles. A method of fabricating nano- and micron-sized spheres of CL-20 by using electrospray is discussed. The effects of the precursor solution and the experimental conditions on the morphology and the crystal phase of the CL-20 particles are introduced. A variety of solvents was used to dissolve raw CL-20 for the preparation of the precursor solution with different CL-20 contents. The conductivity and viscosity of the precursor solutions were tested before the electrospray process. The electrostatic parameters were adjusted by changing the voltage and the distance between the nozzle and the plate. The morphology, crystal phase, mechanical sensitivity, density, and thermal stability of the raw CL-20 and the as-sprayed CL-20 samples were determined using scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry (DSC). Furthermore, the density and the mechanical sensitivity were tested for the raw and the as-sprayed CL-20. DSC tests were conducted to compare the thermal stability and reactivity of the samples.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 4; 572-589
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Insensitive Booster Explosive: DAAF Surface-coated with Viton A
Autorzy:
Li, X.
Wu, B.
Liu, S.
An, C.
Wang, J.
Powiązania:
https://bibliotekanauki.pl/articles/358841.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
DAAF
refinement
surface-coated
thermal analysis
impact sensitivity
Opis:
3,3’-Diamino-4,4’-azoxyfurazan (DAAF) is the principal component of an insensitive booster explosive; refined DAAF and DAAF surface-coated with Viton A were prepared. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were employed to characterize the morphology, composition, and thermal decomposition of these samples. The impact sensitivity and theoretical detonation velocity of DAAF-based composites were also measured and analyzed. The results showed that DAAF surface-coated with Viton A was successfully obtained, and the impact sensitivity of DAAF/Viton A composites was much lower than that of crude DAAF. In addition, DAAF/Viton A composites exhibited better thermal stability compared to crude DAAF and refined DAAF. The theoretical detonation velocity of DAAF/Viton A composites and TATB/Viton A composites are roughly the same. Therefore, there is still great potential for DAAF to be used as the main explosive component of a booster explosive.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 3; 445-455
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Different Ignition Responses of Powdery and Bulky 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) Based Polymer-bonded Explosives under Ultra-high Voltage Electrostatic Discharge
Autorzy:
Lyu, Z.
Long, X.
Li, Z.
Dai, X.
Deng, C.
He, S.
Li, M.
Yao, K.
Wen, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358240.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
electrostatic spark sensitivity
ultra-high voltage electrostatic discharge
thermal effect
electric field effect
Opis:
The electric spark induced ignition mechanism for explosives needs further study. The ignition of powdery and bulky TATB by electrostatic discharge (ESD) was investigated. Up to 200 kV ultra-high voltage ESD was applied to powdery and bulky explosives of two TATB-based polymer-bonded explosives (named PBX-1 and PBX-2). The results showed that the spark sensitivities of powdery and bulky explosives are extremely different for the same formulation. The 50% ignition voltages of powdery PBX-1 and PBX-2 were 10.8 kV and 8.5 kV, respectively, while the values for the bulky samples (tablets) were not less than 200 kV. Both heat and the electric field can be transmitted into the powdery samples, on the other hand only the electric field can be transmitted into the bulk samples. The electric field has a smaller contribution while the heat has a larger contribution to the ignition during an ESD, i.e., the thermal effect plays a main role in the ignition process. Our experimental results are in good agreement with recent results calculated by density functional theory.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 2; 283-298
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-isothermal Decomposition Kinetics of 1-Amino-1,2,3-triazolium Nitrate
Autorzy:
Du, X.-J.
Zou, M.-S.
Li, X.-D.
Yang, R.-J.
Powiązania:
https://bibliotekanauki.pl/articles/358020.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
1-amino-1,2,3-triazolium nitrate
thermal decomposition
TG
non-isothermal kinetics
compensating effect
Opis:
The thermal decomposition kinetics of 1-amino-1,2,3-triazolium nitrate (ATZ-NO3) was investigated by non-isothermal TG-DTG at various heating rates (2, 5, 10, 15, and 20 °C∙min-1). The results showed that the thermal decomposition of ATZ-NO3 consists of two mass-loss stages. The first mass-loss stage corresponds to the loss of nitrate anion and the substituent group, while the second stage corresponds to the splitting of the triazole ring. The kinetic triplets of the two stages were described by a three-step method. Firstly, the Kissinger and Ozawa methods were used to calculate the apparent activation energies (E) and pre-exponential factors (A) of the two decomposition stages. Secondly, two calculation methods (the Šatava-Šesták and Achar methods) were used to obtain several probable decomposition mechanism functions. Thirdly, three assessment methods (the Šatava, double-extrapolation, and the Popescu methods) were used to confirm the most probable decomposition mechanism functions. The reaction models for both stages are random-into-nuclear and random-growth mechanisms, with n = 3/2 for the first stage and n = 1/3, m = 3 for the second stage. The kinetic equations for the two decomposition stages of ATZ-NO3 may be expressed as [wzór]. Mathematical expressions for the kinetic compensation effect were derived.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 1; 99-114
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Polytetrafluorethylene on the Mechanical and Safety Properties of a Composite Modified Double Base Propellant
Autorzy:
Sun, S.
Zhang, T.
Zhao, B.
Zhang, G.
Li, X.
Luo, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358296.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
PTFE fibres
CMDB propellant
mechanical properties
mechanical sensitivity
combustion
Opis:
A novel Composite Modified Double Base (CMDB) propellant, formed by mechanically mixing aluminium/polytetrafluorethylene (Al/PTFE) powders, was prepared through a rolling process. A variety of tests, such as tensile properties, particle size analysis etc., were carried out to study the influence of PTFE on the CMDB propellant properties. The PTFE deformed from particles to fibres under a uniform shear force, forming a fibre network which greatly improved the propellant’s mechanical properties. Compared to that of the CMDB propellant without PTFE, the elongation of the propellant containing 6% PTFE was increased by 26 times, and moreover, the impact strength was enhanced by 326% at −40 °C. Significantly, the propellant friction and impact sensitivities were reduced by 75.8% and 35.6%, respectively. In addition, the presence of PTFE in the propellant resulted in fluorination of the Al. The gaseous combustion product AlF3 reduced the propellant combustion agglomeration. Consequently, PTFE significantly promoted the propellant’s mechanical performance, decreased the shock (friction, impact) sensitivity and reduced combustion agglomeration.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 3; 468-484
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies