Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Chen, Peng" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
A Pressure-Dependent Plasticity Model for Polymer Bonded Explosives under Confined Conditions
Autorzy:
Wei, Qiang
Huang, Xi-cheng
Chen, Peng-wan
Liu, Rui
Powiązania:
https://bibliotekanauki.pl/articles/27787985.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
polymer bonded explosives
constitutive model
damage model
confining pressure
mechanical response
Opis:
The safety of explosives is closely related to the stress state of the explosives. Under some stress stimulation, explosives may detonate abnormally. It is of great significance to accurately describe the mechanical response of explosives for the safety evaluation of explosives. The mechanical properties of polymer bonded explosives (PBXs) strongly depend on pressure. In this study, the mechanical behaviour of PBXs under confined conditions was investigated. It was found that the stress-plastic strain response of a PBX under high confining pressures is a combination of the non-linear and linear hardening portions. However, the linear hardening portion has often been neglected in characterizing the mechanical behaviour of a PBX under such pressures. The Karagozian and Case (K&C) model was applied to characterize the mechanical behaviour of PBXs. The numerical results demonstrated that when the confining pressure was high, the K&C model could not adequately match the experimental data due to the limitation of the damage model. Therefore, a new damage model was developed by means of considering intragranular damage and transgranular damage. This modification made it possible to introduce a linear hardening process into the original K&C model. The method proposed to describe the stress-strain results under high confining pressures was to consider the stress-plastic strain curve, including the nonlinear and linear hardening portions. The damage evolution of the original K&C model and a linear hardening model were applied for the nonlinear and linear hardening portions respectively. The influence of the linear hardening model on the damage evolution of the original K&C model was included when describing the nonlinear hardening portion. A comparison between simulation and experiment showed that the modified K&C model could well describe the mechanical response of PBXs under different confining pressures.
Źródło:
Central European Journal of Energetic Materials; 2021, 18, 3; 339--368
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Toluene Mono-nitration in a Semi-batch Reactor
Autorzy:
Chen, L. P.
Chen, W. P.
Liu, Y.
Peng, J. H.
Liu, R. H.
Powiązania:
https://bibliotekanauki.pl/articles/358853.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
toluene mono-nitration
apparent activation energy
semi-batch reaction
thermal hazard
Opis:
Toluene mono-nitration in a semi-batch reactor was investigated with reaction calorimeter (RC1). The mixed acid HNO3/H2SO4/H2O (wt%) was used in proportion 13/66/21, which is similar to industrial parameters. The exothermic rates at different reaction temperatures were compared, and then the curves of heat generation rate after dosing were analyzed. The Maximal Temperature attainable by runaway of the desired Synthetic Reaction (MTSR) under different conditions were calculated for the course hazard evaluation. The results showed that the average reaction heat of mono-nitration was between 169.07~177.11 kJ mol-1, and the special heat of reactant was about 2 kJ kg-1 K-1. Average Ea of second order kinetic was about 30 kJ mol-1, and reaction rate was 10-4 mol s-1 l-1 order of magnitude when the strength of sulphuric acid was about 73.5%. It was also found that when temperature or stirring speed increases, the potential heat accumulation decreases.
Źródło:
Central European Journal of Energetic Materials; 2008, 5, 2; 37-47
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Electrostatic Hazards Assessment of Nitramine Explosives: Resistivity, Charge Accumulation and Discharge Sensitivity
Autorzy:
Peng, Q.
Cao, W.
Zhou, W.
He, Z.
Jiang, W.
Chen, W.
Powiązania:
https://bibliotekanauki.pl/articles/358757.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
nitramine explosives
electrostatic hazards
resistivity
charging characteristics
electrostatic discharge sensitivity
Opis:
The electrostatic hazards of nitramine explosives (RDX, HMX) were assessed in this paper. The resistivities of different particle-size RDX and HMX were tested by a device designed and manufactured according to the standard ISO/IEC 80079-20-2:2016. This work shows that the resistivities of uncompacted RDX and HMX increase as the particle size decreases. Charging characteristics test experiments were also carried out using a so-called sieve method. Using this method, the influence of aperture size on charge accumulation of RDX was studied, and the characteristics of electrostatic accumulation of different particle-size RDX and HMX sieved with 50 mesh standard sieve were compared. The results show that the absolute value of the charge accumulation increases as the mesh number increases (i.e. the aperture size decreases), and increases as the particle size is decreased, indicating that nano-sized RDX and nano-sized HMX accumulate static electricity more easily than conventional micron-sized ones. Finally, the electrostatic discharge (ESD) sensitivity of nano-sized RDX and nano-sized HMX was investigated. Nano-sized nitramine explosives were found to have a higher ESD sensitivity than micron-sized ones.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 3; 755-769
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of the Mechanical and Thermal Properties, and Impact Sensitivity of Pressed HMX-based PBX
Autorzy:
Li, Yuxiang
Wu, Peng
Hua, Cheng
Wang, Jun
Huang, Bing
Chen, Jin
Qiao, Zhiqiang
Yang, Guangcheng
Powiązania:
https://bibliotekanauki.pl/articles/358006.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
nanoexplosives
impact sensitivity
particle size
hot spot
Opis:
Submicron- and nano-explosives have attracted growing attention, while the mechanism of how particle size influences the impact sensitivity is not completely understood. In the present work, HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) based PBXs (plastic bonded explosives) of three particle size distributions (1-2 and 10-20 μm, and 100-300 nm) and two pressed densities (91%TMD and 79%TMD) were characterized and tested with a range of techniques to determine their mechanical and thermal properties and impact sensitivities. The results demonstrated that with decreased particle size, the mechanical strength as well as the thermal conductivity were dramatically improved, and the impact sensitivity was significant decreased. The structure of impacted samples suggested that the ignition mechanism is dependant on the particle size. Samples with higher density were more sensitive to impact, as the impact force acting on these samples was higher. The correlation between particle size and impact sensitivity is discussed in detail.
Źródło:
Central European Journal of Energetic Materials; 2019, 16, 2; 295-315
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dft investigation of a high energy density polynitro compound, 2,2’-Bis(trinitromethyl)-5,5’-azo-1,2,3,4- tetrazole
Autorzy:
Lin, H.
Zhu, S. G.
Chen, P. Y.
Li, K.
Li, H. Z.
Peng, X. H.
Powiązania:
https://bibliotekanauki.pl/articles/358030.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
polynitro
electronic structure
thermodynamic properties
crystal structure
detonation performance
stability
Opis:
A novel polynitro compound, 2,2’-bis(trinitromethyl)-5,5’-azo- 1,2,3,4-tetrazole, was designed and investigated at the DFT-B3LYP/6-31G(d) level. Its properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure, were predicted. This compound is most likely to crystallize in the P21 space group, and the corresponding cell parameters are Z = 2, a = 5.46 Å, b = 9.72 Å, c = 14.05 Å, α = 90°, β = 90°, γ = 90°. In addition, the detonation velocity and pressure were also estimated by using the empirical Kamlet-Jacobs equations, and were predicted to be 8.28 km/s and 31.61 GPa respectively. The oxygen balance of this compound is +13.79%, which indicates that it could serve as an oxidizer. Bond dissociation energy calculations show that the C(13)-N(21)O2 and C(14)-N(30)O2 bonds are the locations of thermal decomposition and that this compounds meets the thermal stability requirements as an exploitable explosive. Keywords: polynitro, electronic structure, thermodynamic properties, crystal structure, detonation performance, stability.
Źródło:
Central European Journal of Energetic Materials; 2013, 10, 3; 325-338
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies