Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "struktura warstwy" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wpływ stanu strukturalnego na skutki obróbki laserowej stali o różnym składzie chemicznym. Cz. 2, Stale konstrukcyjne stopowe
Influence of structural state on the effects of laser treatment of steel with different chemical compositions. P. 2, Constructional alloy steels
Autorzy:
Berkowski, Leopold
Powiązania:
https://bibliotekanauki.pl/articles/211912.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Obróbki Plastycznej
Tematy:
stal konstrukcyjna
obróbka laserowa
azotowanie
właściwości warstwy
struktura warstwy
constructional steel
laser treatment
nitriding
layers properties
layer structure
Opis:
Praca obejmuje drugą część badań przyczynkowych nad oceną stanu strukturalnego stali o różnym składzie chemicznym w strefie grzania laserowego, realizowanych w Instytucie Obróbki Plastycznej oraz w Instytucie Maszyn Roboczych i Transportu Politechniki Poznańskiej. W pierwszej części [1] badano skutki obróbki laserowej stali węglowych o różnej zawartości węgla; od około 0,04 %C (stal E04J) do 0,8 %C (stal N8E). W niniejszym artykule oceniano podobnie skutki obróbki laserowej pięciu stali konstrukcyjnych o różnym składzie chemicznym (18HGT, 33H3MF, 38HMJ, 40H i 45) w stanie zahartowanym i ulepszonym cieplnie oraz porównano skutki obróbki laserowej stali 33H3MF i 38HMJ (przeznaczonych do azotowania) w stanie przed i po azotowaniu; przy czym grubość warstwy dyfuzyjnej wynosiła około 0,6 mm. Badania wykazały, że twardość po zahartowaniu laserowym zależy przede wszystkim od zawartości węgla w stali, natomiast odporność na odpuszczające działanie temperatury od zawartości węglikotwórczych składników stopowych. Stwierdzono ponadto, że – podobnie jak w przypadku stali węglowych – parametry zahartowanego obszaru (głębokość i szerokość warstwy) zmniejszają się ze wzrostem prędkości przemieszczania się wiązki światła lasera. Obserwacje strukturalne wykazały, że warstwa obrobiona ciepl-nie zawiera różniące się między sobą obszary; strefa, a także liczne drobne pęknięcia ułożone zgodnie z kierunkiem odprowadzenia ciepła oraz (podobnie jak w pracy [1]) szczeliny ułożone prostopadle do powierzchni próbki i pęcherze. Stwierdzono zróżnicowane struktury hartowania w strefie przetopionej. W drugiej części badań oceniono rozkłady twardości warstw azotowanych stali 33H3MF i 38HMJ. Stwierdzono, że różnią się one głębokością utwardzenia i wyraźnie twardością przy powierzchni, a war-stwa stali 33H3MF ma w tej części znacznie większą twardość. Zauważono również, że obróbka laserowa niszczy warstwę dyfuzyjną (powierzchniową), powodując powsta-nie pęcherzy, które w niektórych przypadkach są przyczyną tworzenia się nieciągłości powierzchni, a także że twardość przetopionej warstwy dyfuzyjnej jest o około 400 jednostek HV0,1 mniejsza od twardości warstwy azotowanej.
This paper covers the second part of adjunctive studies assessing the structural state of steel with different chemical compositions in a laser heating zone, conducted at the Metal Forming Institute and at the Institute of Machines and Transportation of the Poznań University of Technology. The first part [1] investigated the effects of laser treatment of carbon steels with varying carbon content; from approx. 0.04 %C (E04J steel) to 0.8 %C (N8E steel). Similarly, this article assesses the effects of laser treatment of five construc-tional steels with varying chemical compositions (18HGT, 33H3MF, 38HMJ, 40H and 45) in hardened and heat-treated state, and the effects of laser treatment of 33H3MF and 38HMJ steels (intended for nitriding) were compared in pre- and post-nitrided state; where the thickness of the diffusion layer was approx. 0.6 mm. Tests showed that hardness after laser treatment depends, above all, on carbon content in the steel, while resistance to the tempering action of temperature depends on the content of carbide-forming alloying ingredients. Moreover, it was determined that – similarly as in the case of carbon steels – the parameters of the hardened area (depth and width of the layer) decrease as the laser beam’s speed of travel increases. Structural observations revealed that the heat-treated layer contains differing areas; the heat-affected zone, and numerous fine cracks oriented in the direction of heat take-off, as well as (similarly as in paper [1]), crevices arranged perpendicularly to the sample’s surface, and bubbles. Different har-dening structures were observed in the melted zone. In the second part of studies, hard-ness distributions of nitrided layers of 33H3MF and 38HMJ steels were evaluated. It was determined that they differ in hardening depth, and clearly, in near-surface hardness; and the layer of 33H3MF steel has substantially higher hardness in this layer. It was also observed that laser treatment destroys the diffusion (surface) layer, causing bubbles to form, which are the cause of surface discontinuities in certain cases, as well as that the hardness of the melted diffusion layer is approx. 400 HV0.1 units lower than the hardness of the nitrided layer.
Źródło:
Obróbka Plastyczna Metali; 2019, 30, 2; 165-178
0867-2628
Pojawia się w:
Obróbka Plastyczna Metali
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ nagniatania i temperatury azotowania jonowego na właściwości warstwy dyfuzyjnej stali 38HMJ
The influence of burnishing and the temperature of ion nitriding on the properties of the diffusion layer of 38 HMJ steel
Autorzy:
Berkowski, L.
Powiązania:
https://bibliotekanauki.pl/articles/211790.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Obróbki Plastycznej
Tematy:
nagniatanie
azotowanie jonowe
temperatura
struktura warstwy wierzchniej
właściwości warstwy wierzchniej
burnishing
ion nitriding
temperature
surface layer properties
surface layer structure
Opis:
Praca przedstawia wyniki badań dotyczących oceny wpływu powierzchniowego odkształcenia plastycznego i obniżonej temperatury azotowania jonowego na właściwości warstwy wierzchniej stali do azotowania 38HMJ. Do powierzchniowego umacniania warstwy wierzchniej próbek zastosowano trzy sposoby nagniatania: kulką, głowicą wielorolkową oraz nagniatanie strumieniowe. Nagniatanie kulką wałków o średnicy 17,5 mm prowadzono z pomocą specjalnego przyrządu zamocowanego na tokarce. Kulki o różnych średnicach gwarantowały różną głębokość umocnienia. Pozostałe parametry nagniatania były stałe. Nagniatanie głowicą firmy Hegenscheidt odbywało się w dwóch przejściach, przy prędkości obrotowej 450 obr/min i posuwie, zależnym od konstrukcji przyrządu. Gniot zależał od naddatków na próbkach. Nagniatanie strumieniowe prowadzono na powierzchni płaskiej próbek, wyciętych z wałka o średnicy 45 mm, z pomocą urządzenia pneumatycznego, śrutem stalowym ciętym, o zaokrąglonych krawędziach. Parametrami śrutowania były: średnica dyszy, ciśnienie powietrza i odległość próbki od dyszy. Czas ekspozycji gwarantował różną głębokość odkształcania. Azotowanie jonowe prowadzono w piecu typu IONIMP. Skutki obróbki oceniano pod mikroskopem świetlnym oraz metodą pomiaru twardości z pomocą twardościomierza ZWICK 3212. Parametry geometrii powierzchni wyznaczano z pomocą profilometru Taylor-Hobson. Badania wykazały, że każdy w wymienionych sposobów nagniatania zmieniał geometrię powierzchni w charakterystyczny dla siebie sposób, a azotowanie jonowe powodowało: przy małej chropowatości po obróbce plastycznej – wzrost, a przy dużej (nagniatanie strumieniowe) – zmniejszenie parametrów chropowatości. Doświadczenia wykazały, że wpływ odkształcenia plastycznego zanika po azotowaniu w temperaturze 450oC; niewielki wpływ odkształcenia plastycznego na właściwości warstwy wierzchniej można zauważyć po azotowaniu jonowym w niższej temperaturze 350 i 400oC. Ponadto, w próbkach azotowanych jonowo w temperaturze 450oC, niezależnie od obróbki powierzchniowej, zaobserwowano cienką warstwę azotków.
The paper presents the results of investigation concerning the assessment of surface plastic deformation and reduced ion nitriding temperature on the properties of the surface layer of 38HMJ steel, traditional one for nitriding. Surface straining of the surface layer of the samples has been effected with the use of three ways of burnishing: globular burnishing, roller burnishing and shot peening. Globular burnishing of shafts with the diameter of 17.5 mm been effected by means of a special device fixed on a lathe. Balls of various diameters have guaranteed various depth of consolidation. The other parameters of burnishing were constant. Burnishing with the Hegenscheidt head has been effected in two passes with the rotational speed of 450 rpm and feed depending on the device design. The draft depended on the allowances on the samples. Shot peening has been performed on the flat surface of the samples, cut out of a 45 mm diameter shaft, flat surface of the samples, cut out of a 45 mm diameter shaft, with the use of a pneumatic device, with rounded edges cut shot. The shot peening parameters were as follows: nozzle diameter, air pressure and the sample distance from the nozzle. The time of exposure guaranteed various depth of deformation. Ion nitriding has been performed in a furnace typed IONIMP. The results of the treatment have been assessed under an optical microscope and by the method of hardness measurement by means of a hardness tester, ZWICK 3212. The parameters of the surface geometry have been determined with the use of a Taylor-Hobson profile measurement gauge. Each of the three ways has changed the surface geometry in its own way. Ion nitriding has resulted in: in the case of low roughness after plastic treatment, increase of the roughness parameters; in the case of high roughness (shot peening), reduction of the roughness parameters. Experiments have shown that the influence of plastic deformation is none after nitriding at the temperature of 450oC; a slight influence of plastic deformation on the properties of the surface layer can be observed after ion nitriding at lower temperature of 350 and 400oC. Moreover, a thin layer of nitrides has been found in the samples ion nitrided at 450oC, regardless of the surface treatment.
Źródło:
Obróbka Plastyczna Metali; 2015, 26, 1; 7-20
0867-2628
Pojawia się w:
Obróbka Plastyczna Metali
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies