Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy c-means" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Technique Based on Fuzzy Logic for Cotton Bale Lay-down Management
Nowa technika zarządzania składowaniem bel bawełny
Autorzy:
Das, S.
Ghosh, A.
Powiązania:
https://bibliotekanauki.pl/articles/232810.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
cotton bale
cluster analysis
fibre property
fuzzy logic
fuzzy c-means algorithm
składowanie bawełny
logika rozmyta
bela bawełny
Opis:
In this paper a new technique has been proposed for cotton bale management using fuzzy logic. The fuzzy c-means clustering algorithm has been applied for clustering cotton bales into 5 categories from 1200 randomly chosen bales of the J-34 variety. In order to cluster bales of different categories, eight fibre properties, viz., the strength, elongation, upper half mean length, length uniformity, short fibre content, micronaire, reflectance and yellowness of each bale have been considered. The fuzzy c-means clustering method is able to handle the haziness that may be present in the boundaries between adjacent classes of cotton bales as compared to the K-means clustering method. This method may be used as a convenient tool for the consistent picking of different bale mixes from any number of bales in a warehouse.
W artykule zaproponowano nową technikę zarządzania składowaniem bawełny opartą na logice rozmytej. Badaniu poddano 1200 losowo wybranych bel bawełny. W celu pogrupowania bel w 5 kategoriach zbadano właściwości, tj. wytrzymałość, wydłużenie, średnią długość, jednorodność długości, zawartość włókien krótkich, dojrzałość, współczynnik odbicia i zażółcenie każdej beli. Opracowana metoda może być stosowana jako wygodne narzędzie do sortowania różnych mieszanek z dowolnej liczby bel w magazynie.
Źródło:
Fibres & Textiles in Eastern Europe; 2017, 2 (122); 30-33
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fabric Defect Detection Using a Hybrid and Complementary Fractal Feature Vector and FCM-based Novelty Detector
Wykrywanie defektów tkanin za pomocą hybrydowego wektora funkcji fraktalnej i nowatorskiego detektora opartego na zbiorze rozmytym wartości średnich (FCM)
Autorzy:
Zhou, J.
Wang, J.
Bu, H.
Powiązania:
https://bibliotekanauki.pl/articles/232397.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
defect detection
box-counting dimension
fuzzy c-means
novelty detection
wykrywanie defektów
wektor hybrydowy
zbiór rozmyty wartości średnich
Opis:
Automated detect detection in woven fabrics for quality control is still a challenging novelty detection problem. This work presents five novel fractal features based on the box-counting dimension to address the novelty detection of fabric defect. Making use of the formation of woven fabric, the fractal features are extracted in a one-dimension series obtained by projecting a fabric image along the warp and weft directions, where their complementarity in discriminating defects is taken into account. Furthermore a new novelty detector based on fuzzy c-means (FCM) is devised to deal with one-class classification of the features extracted. Finally, by jointly applying the features proposed and the FCM based novelty detector, we evaluate the method proposed for eight datasets with different defects and textures, where satisfying results are achieved with a low overall missing detection rate.
Automatyczne wykrywanie defektów tkanin w celu kontroli ich jakości mimo wielu dotychczasowych badań nadal stanowi wyzwanie. Mając na celu opracowanie nowatorskiej metody wykrywaniem wad tkanin przedstawiono pięć cech fraktalnych. W celu klasyfikacji wyodrębnionych cech opracowano detektor wad tkanin oparty na zbiorze rozmytym wartości średnich (FCM). Poprzez wspólne zastosowanie proponowanych cech i opartego na FCM detektorze sprawdzono proponowaną metodę dla ośmiu zestawów danych z różnymi defektami i teksturami. Stwierdzono, że otrzymane wyniki są na satysfakcjonującym poziomie.
Źródło:
Fibres & Textiles in Eastern Europe; 2017, 6 (126); 46-52
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies