Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "type II" wg kryterium: Temat


Wyświetlanie 1-13 z 13
Tytuł:
The Tendencies and Timeline of the Solar Burst Type II Fragmented
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412634.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
e-CALLISTO
Opis:
We report the timeline of the solar radio burst Type II that formed but fragmented at certain point based on the eruption of the solar flare on 13th November 2012 at 2:04:20 UT. The active region AR 1613 is one of the most active region in 2012. It is well known that the magnetic energy in the solar corona is explosively released before converted into the thermal and kinetic energy in solar flares. In this work, the Compound Astronomical Low-frequency, Low-cost Instrument for Spectroscopy Transportable Observatories (CALLIISTO) system is used in obtaining a dynamic spectrum of solar radio burst data. There are eight active regions and this is the indicator that the Sun is currently active. Most the active regions radiate a Beta radiation. The active regions 1610, 1611 and 1614 are currently the largest sunspots on the visible solar disk. There is an increasing chance for an isolated M-Class solar flare event. It is also expected that there will be a chance of an M flare, especially from AR 1614 and 1610. Although these two observations (radio and X-rays) seem to be dominant on the observational analysis, we could not directly confirmed that this is the only possibility, and we need to consider other processes to explain in detailed the injection, energy loss and the mechanism of the acceleration of the particles. In conclusion, the percentage of energy of solar flare becomes more dominant rather than the acceleration of particles through the Coronal Mass Ejections (CMEs) and that will be the main reason why does the harmonic structure of type II burst is not formed. This event is one fine example of tendencies solar radio burst type III, which makes the harmonic structure of solar radio burst type II fragmented.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 12; 84-102
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation on a Broken Solar Burst Type II during High Activities in AR1613 on 13th November 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Zulkifli, W. N. A. W.
Ibrahim, M. B.
Arifin, N. S.
Amran, N. A.
Powiązania:
https://bibliotekanauki.pl/articles/411666.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
e-CALLISTO
Opis:
The present article is an attempt to analyze the solar burst Type II observations based on solar flare and Coronal Mass Ejections (CMEs) events. We choose an intriguing type II radio burst with a velocity of 1193 kms-1 that occurred on 2012 November 13 at 2:04:20 UT. In this case, the study of solar radio burst type III is of paramount importance because of the fact that it helps to gain an insight of generation mechanisms of solar flare and Coronal Mass Ejections (CMEs) phenomena. Here, we have got a reasonably clear idea of the various forms under which the type III continuum emission may appear and potentially form a type II burst. However, in this case, the Type II solar burst only successfully forms a fundamental structure within the first few minute period, but broken suddenly before evolve a harmonic structure. This phenomenon is very interesting to be tackled and study. How the burst suddenly broken is still ongoing research seems the event is very rare and hard to be proved. There are a few questions that cause this unique situation which related to: (i) the intensity and duration of type III burst which also related to the classification of solar flare (ii) the probabilities CMEs to occur during that time and also the factor of the total amount of massive burst that exploded, Thus, we can conclude that the solar burst type III event still tells us an enigmatic characteristic from time to time due to the relationship of energetic particles and streams of particles with coronal magnetic fields and the pattern of Sun activity due to the 24th solar cycle. It might an interesting to study in detail the main factor that caused the Type II solar burst broken. Indirectly, it might because of the very intense of solar flares that make the percentage of energy of solar flare become more dominant rather than the acceleration of particles through the Coronal Mass Ejections. Thus, we realize that the potential energy during this event is higher than the kinetic energy of the particles.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 9; 8-15
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Type II Solar Radio Burst with a Split and Herring − Bones During a Minimum Solar Activity
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411839.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
e-CALLISTO
Opis:
A preliminary correlation study of the herring − bone type II with a type III solar burst of has been made. On the basis of this study and in combination with the observation in radio emission, an interpretation of the mechanism of the occurrence of this event has been proposed. The type II solar radio burst with a split and herring bone is occurring at the same time from 36 MHz till 50 MHz. We have noted that an individual type III burst also can be observed at 13:23 UT from 45-50 MHz. During that day, a stream of solar wind from a coronal hole on the Sun has disturbing Earth's magnetosphere creating a minor geomagnetic storm, G1 on the NOAA scale of G1-G5. In this case, the solar flare is not very high, but CME is responsible to form a solar radio burst type II. Overall, based on seven days observation beginning from 25th March 2013, the solar activity is considered as very low. The highest solar flare can be observed within 7 days is only a class of B8 flare. There was no CMEs event that directed to the Earth is detected. The geomagnetic field activities are also at minimum level. Although the solar flare event is at a lower stage, it is still possible to form the solar radio burst type II which is associated with CME event. From the selected event, although theoretically solar radio burst type II is associated with CMEs, there is no compelling solar radio burst type II without a flare. The only difference is the dynamic structure and the intensity and speed of both phenomena (solar flares and CMEs) which depend on the active region. Nevertheless, understanding how energy is released in solar flares is one of the central questions in astrophysics. This solar radio burst type II formation is the first event that successfully detected by e-CALLISTO network in 2013.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 13, 2; 104-111
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probability of Solar Flares Turn Out to Form a Coronal Mass Ejections Events Due to the Characterization of Solar Radio Burst Type II and III
Autorzy:
Hamidi, Z. S.
Powiązania:
https://bibliotekanauki.pl/articles/412360.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar flare
Coronal Mass Ejection
solar burst
type II
type III
space Feather
Opis:
The solar flare and Coronal Mass Ejections (CMEs) are well known as one of the most massive eruptions which potentially create major disturbances in the interplanetary medium and initiate severe magnetic storms when they collide with the Earth‟s magnetosphere. However, how far the solar flare can contribute to the formation of the CMEs is still not easy to be understood. These phenomena are associated with II and III burst it also divided by sub-type of burst depending on the physical characteristics and different mechanisms. In this work, we used a Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy in Transportable Observatories (CALLISTO) system. The aim of the present study is to reveal dynamical properties of solar burst type II and III due to several mechanisms. Most of the cases of both solar radio bursts can be found in the range less that 400 MHz. Based on solar flare monitoring within 24 hours, the CMEs that has the potential to explode will dominantly be a class of M1 solar flare. Overall, the tendencies of SRBT III burst form the solar radio burst type III at 187 MHz to 449 MHz. Based on solar observations, it is evident that the explosive, short time-scale energy release during flares and the long term, gradual energy release expressed by CMEs can be reasonably understood only if both processes are taken as common and probably not independent signatures of a destabilization of pre-existing coronal magnetic field structures. The configurations of several active regions can be sourced regions of CMEs formation. The study of the formation, acceleration and propagation of CMEs requires advanced and powerful observational tools in different spectral ranges as many „stages‟ as possible between the photosphere of the Sun and magnetosphere of the Sun and magnetosphere of the Earth. In conclusion, this range is a current regime of solar radio bursts during CMEs events.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 16; 1-85
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Active Regions 11036 Characteristics Leads To Solar Flare Class C7.2 Phenomena
Autorzy:
Zainol, N. H.
Hamidi, Z. S.
Husien, Nurulhazwani
Ali, M. O.
Sabri, S. N. U.
Shariff, N. N. M.
Faid, M. S.
Monstein, C.
Ramli, Nabilah
Powiązania:
https://bibliotekanauki.pl/articles/1192106.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar Radio Burst Type II
solar flare
Callisto network
active region
Opis:
The solar flares are generated from electromagnetic radiation which is sudden oscillation of the stored energy in the magnetic field of the sun. Flares are categorized according to their brightness as C, M and X, where X is the brightest. The X class flares caused a long-time solar storm and ionospheric radio waves sparkling. The moderate level M class flares mostly effect polar cups and cause short-time radio sparkling. However, the C class flares are weaker than the X and M flares. In this work, we present an active region from the disturbance of magnetic field on the area of the Sun and may lead to powerful event if the magnetic field become stronger. The CALLISTO system network that has been installed in Gauri, India observed data that contain Solar Radio Burst Type II (SRBT II) occurred on 22nd December 2009 at 04:57 UT to 05:02 UT. Five active regions were obtained from online data via internet from the Space Weather website and the Solar Monitor website. All data and information from these sources assist in analyze of the phenomena. The magnetic field and X-ray flux, proton density increase the possibilities that SRBT II observed by CALLISTO network to generate powerful solar flare. When X-ray flux level was at maximum, then solar flare was at peak point. However, solar activity level was low because among of five active regions present, only one C-class flare event occurred. The most active region that contributes this event is an AR11036 with C-class flare.
Źródło:
World Scientific News; 2016, 45, 2; 80-91
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fundamental and Second Harmonic Bands of Solar Radio Burst Type II Caused by X1.8 - Class Solar Flares
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411652.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar physics
radio burst
type II
Zeeman Effect
solar flare
CALLISTO
Opis:
An extreme 2012 October 23 solar flare event marked on the onset of the CALLISTO data, being one of the highest solar flare event that successfully detected. The formation of harmonic solar burst type II in meter region and their associated with X1.8-class solar flares has been reported. This burst has been observed at the National Space Centre, Banting, detected by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) system in the range of 150-400 MHz in the low frequency band. It occurred between 3.17:45 UT to 3.19:00 UT within 1 minute 15 seconds. The Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory CALLISTO spectrometer is a solar dedicated spectrometer system that has been installed all over the world to monitor the Sun activity in 24 hours. The growth of this burst is often accompanied by abundance enhancement of particles which may take the form of multiple independent drifting bands or other forms of fine structure. Due to the results, the drift rate of this burst is 2.116 MHz s–1, which is considered as a slow drift rate. These drifting bands are approximately having a frequency ratio 2:1. This burst is a particular interest, though of sporadic and infrequent occurrence. The splitting is due to the effect of magnetic splitting, analogous to the Zeeman Effect. This is one of the examples which the type II burst is not always associated with CMEs event. The combination of radio and x-ray region give a complete view of the solar flare eruption from e active region AR1598. Both different electromagnetic spectrum shows the exact time. Other interesting results is that this type II burst is not associated with CMEs as usual, but due to the very high solar flare event with a fundamental form at more than 100 MHz. An extension of the present work will be a detailed study of the possible triggering and the driving mechanism of solar flare explosion.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 14, 2; 208-217
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of Selected Solar Radio Bursts Based on Solar Activity Detected by e- CALLISTO (Malaysia)
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412630.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
type IV
type V
type U
e-CALLISTO
Opis:
One of the main reasons to study more about the dynamics of solar radio bursts is because solar these bursts can interfere with the Global Positioning System (GPS) and communications systems. More importantly, these bursts are a key to understand the space weather condition. Recent work on the interpretation of the low frequency region of a main solar burst is discussed. Continuum radio bursts are often related to the solar activities such as an indication of the formation of sunspot, impulsive phase of solar flares and Coronal Mass Ejections (CMEs) and their frequencies correspond to the densities supposed to exist in the primary energy release volume. Specifically, solar burst in low frequency play an important role in interpretation of Sun activities. In this work, we have selected few solar bursts that successfully detected by our station at the National Space Centre, Banting Selangor. Our objective is to correlate the solar burst with Sun activities by looking at the main sources that responsibility with the trigger of solar burst. It is found that type II burst is dominant with Coronal Mass Ejections (CMEs), type III burst associated with solar flare, IV burst with the formation of active region and type U burst high solar flare. We believed that this work is a good start to monitor Sun’s activities in Malaysia as equatorial country.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 13, 2; 144-159
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Occurrences Rate of Type II and III Solar Radio Bursts at Low Frequency Radio Region 45 − 870 MHz
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412187.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
low frequency
solar burst
type II
type III
solar flare
Coronal Mass Ejections
CMEs
Opis:
Observations of type II and III solar bursts indicate that while type III bursts may appear at any altitude, from the very low corona into interplanetary space, type II solar bursts do not act the same way. This work focuses on recent observations in the radio region on the low frequency region from 45 MHz to 870 MHz. Our analysis employed the accuracy of the daily solar burst measurements of e-CALLISTO network. It was found that solar burst type II explode quite minimum with 1-2 events from 2006 - 2010. However, the data 2011 for solar burst type II increases drastically with 16 events has been recorded. The occurrences of Coronal Mass Ejections (CMEs) events are also increasing up to four times in 2011. Most of the both events can be observed in the range of 150 MHz till 500 MHz. Overall, we can say that the range of photon energy for solar burst type III is between 7.737 x 10-7 eV to 1.569 x 10-6 eV. In the case of solar burst type II, the distribution of energy is much smaller with 1.596 x 10-6 eV to 6.906 x 10-6 eV. Detailed investigation of solar burst will concern the 2011 data seem to show a significant trend for both types. We showed that the increasing of both solar burst events via years implies directing an increasing of solar activities including sunspot number, solar flare and Coronal Mass Ejections (CMEs) events. It is expected that both types will increase gradually in the beginning of 2014.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 18; 103-112
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Coronal Electron Density Distribution Estimated from Meter Type II Radio Bursts and Coronal Mass Ejections
Autorzy:
Yusof, N. S.
Hamidi, Z. S.
Norsham, N. A.
Jafni, A. I.
Kahlid, N. M.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/1192681.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
coronal mass ejection
Type II radio burst
electron density distribution
e-CALLISTO
Opis:
In this paper, we investigate the characteristic coronal mass ejection and Type II radio burst, we calculated the drift rate of Type II Radio burst and determined the electron density distribution from a Coronal Mass Ejections. The data were taken from website e-CALLISTO, Space Weather, SolarHam and also from the Langkawi National Observatory, National Space Agency, Langkawi Kedah, Malaysia. All the data collected on 15th March 2015, 4th November 2015 and 16th December 2015. On 16 March 2015, the events were associated with slower C9 solar flare and CME. For this week, the events were causing radio blackouts on Earth. On 4 November 2015, the events were associated with M1.9 solar flare, CME and Solar burst Type II. The value of the solar wind was 570.4 km/Sec and value for radio sun was 124 sfu. For drift rate, we calculated the value for sites in Sri Lanka (ACCIMT-SRI), Ooty, India (OOTY), Indonesia (INDONESIA) and Kasi, South Korea (KASI) at between 0324 to 0328 UTC. In South Korea was highest drift rate, which is 1.397 MHz/s. Also, at HB9SCT, Switzerland (HB9SCT), Humain, Belgium (Humain), Daro, Germany (Daro-VHF) and TCD in Birr, Ireland (BIR), we calculated the drift rate of solar burst Type II between 1200 until 1203 UTC. In Belgium had the highest value of the drift rate to compare at other sites. Harmonic pattern was also appeared for all these sites. On 16th December 2015, this event associated with C6.6 solar flare and CME. These events give an impact on the earth geomagnetic field which is formed of aurora because of the combination of both events that trigger geomagnetic storming.
Źródło:
World Scientific News; 2016, 46; 19-35
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Solar Radio Burst Type II Correlated With Minor CME Contributes to The Production of Geomagnetic Disturbance
Autorzy:
Husien, Nurulhazwani
Hamidi, Z. S.
Ali, M. O.
Zainol, N. H.
Sabri, S. N. U.
Shariff, N. N. M.
Faid, M. S.
Ramli, Nabilah
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192691.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar radio burst
solar radio burst type II
Coronal Mass Ejections
geomagnetic disturbance
Opis:
The solar radio burst type II on 4th November 2015 was associated with minor CME that not lead towards the Earth. This clear type II burst recorded on spectrographs detected by the antenna in several locations (Gauri, Almaty, Kasi and Ooty) were obtained from CALLISTO website. The average time of the burst occurred are around 03:24 UT until 03:28 UT with the clear minor CME emerged recorded by SOHO at 03:12 UT. Although it just a minor CME but it is still giving the effect on Earth as it contributes to geomagnetic disturbance on the Earth during that day. The affected region reported by The Local news is Sweden, where the radar system for aviation was not clear, but it is back to normal after a few hours later. This geomagnetic disturbance is powerful enough that may cause the satellite damage, endanger astronauts and produce destructive surges on power grids.
Źródło:
World Scientific News; 2016, 46; 165-175
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Tendencies Group Type III Burst Form Type II Burst During Low activity
Autorzy:
Hamidi, Z. S.
Mokthtar, Fatin Nabila
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1191365.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
X-ray region
radio region
solar burst
sun
sun type II
sun type III
Opis:
Using the e-CALLISTO network radio observations on 1st June 2015, we present an analysis of the complex type III and type II solar radio bursts during low activity. This event occurred on 1st July 2015 at 13:52 UT (complex solar burst type III) and 13:40 UT - 13:44 UT (solar burst type II). Solar burst type detected at (i) BIR, (ii) BLENSW, (iii) Essen, (iv) Glascow (v) Osra, (vi) Rwanda. The spectral shape consists of high flux densities at meter wavelengths. The energy going into plasma heating during each flare was estimated by computing the time evolution of the energy content of the thermal plasma and obtaining the peak value. This constitutes a lower limit to the thermal energy, since it does not account for the cooling of the plasma prior to this time nor to any heating at later times. It is also believed that the meter wavelength branch of the this type III spectrum may be attributable to second-phase accelerated electrons to form type II burst. There are four sunspots of the active regions (AR2355, AR2356, AR2357, and AR2358) during this event. The solar wind recorded during the event is 342.4 km/s and the density of the proton recorded is 4.1 protons/cm3. Moreover, the are some evidence that radio-quiet CMEs mostly came from the edges of the sun. The main goal of this study was to determine whether is there any possibilities that the radio burst can be formed even the Sun is at low activity and this event is one of the candidate events.
Źródło:
World Scientific News; 2016, 34; 121-134
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Formation of Fundamental Structure of Solar Radio Burst Type II Due X6.9 Class Solar Flare
Autorzy:
Zainol, N. H.
Hamidi, Z. S.
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1190115.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
solar burst
type II
radio region
X-ray region
solar flare
Coronal Mass Ejections (CMEs)
Opis:
A vigorous solar flare event marked on the spectrometer of the CALLISTO data, being one of the highest solar flare event that successfully detected. The formation of solar burst type II in meter region and their associated with X6. 9-class solar flares have been reported. The burst has been observed at the Blein Obsevatory, Switzerland, which detected by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) system in the range of 170-870 MHz in the two polarizations of left and right circular polarization. It occurred between 08:01 UT to 08:08 UT within 7 minutes. The Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory CALLISTO spectrometer is a solar dedicated spectrometer system that has been installed all over the world to monitor the Sun activity in 24 hours. The growth of this burst is often accompanied by abundance enhancement of particles which may take the form of multiple independent drifting bands or other forms of fine structure. Due to the results, the drift rate of this burst is 85.71 MHz s-1, which is considered as a fast drift rate. The burst detected using CALLISTO also being compared to results detected by X-ray GOES data. Both different electromagnetic spectrum shows the exact time. The observations of the burst being discussed in details.
Źródło:
World Scientific News; 2016, 35; 30-43
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Solar Burst Type II, III, and IV and Determination of a Drift Rate of a Single Type III Solar Burst
Autorzy:
Hamidi, Z. S.
Ibrahim, M. B.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411732.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar burst
type II,III,IV
radio region
X-ray region
solar flare
active region
Opis:
The main feature of solar radio type II, III and IV burst is outlined. In this event there are three combinations of bursts that related to the solar flare phenomenon on 6th July 2012. This event is one of good example to observe how far the influence of type II burst could impact the formation of type IV burst and III solar bursts. At first stage, it was observed that a sub-type of H burst form within 2 minutes before type IV solar burst form. The type IV burst is due to the eruption of active region AR 1515 with a fine structure (FS). We used a Blein CALLISTO data in this case. Further analysis also showed that the total energy of the burst are in the range of 4.875 × 10-25 J to 8.48 × 10-25 J and plasma frequency is equal to 1.24 × 104 Hz. Therefore, we could say that in this case, before the solar burst type III occurred, the ejection of CMEs already ejected.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 19, 2; 160-170
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies