Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Salamon, Mariusz" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Efekt lilipuci - typy, przyczyny i znaczenie dla organizmów znajdujących się pod działaniem niekorzystnych czynników środowiska
Lilliput effect - types, causes and significance for organisms under unfavourable environmental conditions
Autorzy:
Salamon, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/1033721.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Przyrodników im. Kopernika
Tematy:
adaptation
dwarfing
Liliput effect
miniaturization
mass extinctions
adaptacja
efekt lilipuci
karłowacenie
miniaturyzacja
wielkie wymierania
Opis:
Efekt lilipuci (lub efekt Liliputa) w swojej pierwotnej wersji definiuje się jako odpowiedź adaptacyjną organizmu na pogorszenie się warunków środowiskowych, polegającą na pozdarzeniowym zmniejszeniu rozmiarów ciała osobników składających się na daną populację. Obecnie wyróżniamy cztery jego typy: preferencyjne przetrwanie taksonów o mniejszym rozmiarze ciała (wymieranie taksonów o dużych rozmiarach), karłowacenie taksonów o dużych rozmiarach, miniaturyzacja połączona z dodatkowymi zmianami morfologicznymi oraz efekt lilipuci połączony z efektem Łazarza. Jako główne przyczyny tego zjawiska wymienia się drastyczne zmiany temperatury (ocieplenie lub ochłodzenie klimatu), zmiany stopnia zasolenia mórz, zakwaszenie mórz, zubożenie środowiska w tlen (zjawiska anoksyczne oraz hipoksyczne), fluktuacje poziomu morza, utratę organizmów symbiotycznych, załamanie w produkcji pierwotnej oraz załamanie sieci troficznych. Efekt lilipuci rozpatrywany jest jednak jako skuteczna adaptacja do tego typu niekorzystnych warunków, ponieważ organizmy skarłowaciałe cechują się mniejszym zapotrzebowaniem na określone zasoby środowiska oraz szybciej osiągają dojrzałość płciową. Został on opisany u takich grupach organizmów jak kręgowce, bezkręgowce, protisty oraz rośliny.
In its original version, Lilliput effect (LE) is defined as adaptive response of an organism to the deterioration of environmental conditions, involving after-event reduction of individuals body size in a given population. Currently, four patterns of LE are considered - preferential survival of smaller taxa (extinction of large taxa), dwarfing of taxa, miniaturization combined with additional morphological changes, and LE combined with Lazarus effect. As the main reasons underlying this phenomenon are mentioned: drastic temperature changes (climate warming or cooling), changes in sea salinity, sea acidification, depletion in oxygen of environment (anoxic and hypoxic conditions), sea level fluctuations, loss of symbiotic organisms, collapse in primary production and of food webs. However, LE is considered as effective adaptation for this type of unfavorable conditions, because dwarfed organisms require lower demand for certain environmental resources and quickly reach sexual maturity. The Lilliput effect has been described for many groups of organisms such as vertebrates, invertebrates, protists and plants.
Źródło:
Kosmos; 2018, 67, 2; 263-273
0023-4249
Pojawia się w:
Kosmos
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Właściwości strukturalne muszli mięczaków jako inspiracja inżynierii bionicznej
The structural properties of mollusc shells as inspriation for bionic engineering
Autorzy:
Brom, Krzysztof
Salamon, Mariusz
Skreczko, Sylwia
Powiązania:
https://bibliotekanauki.pl/articles/1177373.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Przyrodników im. Kopernika
Opis:
Inżynieria bioniczna to stosunkowo młoda dziedzina nauki zajmująca się opracowaniem nowych rozwiązań w technice, inspirując się tymi, które obecne są już w przyrodzie ożywionej. Rozwiązania takie są wysoce wydajne i obiecujące ze względu na to, iż organizmy żywe, ewoluując od milionów lat pod presją czynników środowiskowych, wykształciły zoptymalizowane adaptacje mające zredukować tę presję. Przykładem takiej adaptacji są muszle mięczaków (Mollusca), które pojawiły się w zapisie kopalnym już w kambrze (ok. 500 milionów lat temu) i których podstawową funkcją od tego czasu jest ochrona ciała zwierzęcia przed drapieżnikami. Pomimo, że głównym składnikiem mineralnym muszli mięczaków jest stosunkowo kruchy węglan wapnia (pod postacią aragonitu i/lub kalcytu), charakteryzuje się ona niezwykłymi właściwościami mechanicznymi, polegającymi na dużej zdolności do rozpraszania energii działających sił zewnętrznych. Spowodowane jest to głównie jej zhierarchizowaną budową oraz dodatkiem substancji organicznej, które znacząco zwiększają jej wytrzymałość. Obecnie środowisko naukowe dąży do wytworzenia materiałów o podobnych atrybutach naśladując hierarchiczną budowę muszli oraz tworząc mineralno-organiczne materiały kompozytowe, dzięki czemu być może w przyszłości możliwa się stanie produkcja takich materiałów oraz ich powszechny użytek.
Bionical creativity engineering is a relatively young branch of science concerned with development of new solutions in technique, inspired by those that are already present in nature. Such solutions are highly efficient and promising due to the fact that living organisms have been evolving for millions of years under the pressure of environmental factors and had developed a highly optimized adaptations designed to reduce this pressure. An example of such adaptation are mollusc shells (Mollusca), which first appeared in the Cambrian fossil records (ca. 500 million years ago), the primary function of which since that time is to protect the animal inside against predators. Despite the fact that the shell is made of relatively fragile components (calcium carbonate in aragonite and/or calcite form), it has remarkable mechanical properties. This is mainly due to its hierarchical structure and presence of inclusions of organic matter, which significantly increase its resistance to external forces. Currently, researchers are seeking a way to produce materials with similar attributes forging a hierarchical construction of the shell and creating mineral-organic composite materials, so that it may be possible to produce such materials in the future for a widespread use.
Źródło:
Kosmos; 2015, 64, 2; 365-375
0023-4249
Pojawia się w:
Kosmos
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies