Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "odds" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A refined and asymptotic analysis of optimal stopping problems of Bruss and Weber
Autorzy:
Louchard, Guy
Powiązania:
https://bibliotekanauki.pl/articles/748016.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Stopping times, Unied Approach to best choice, Odds-algorithm, Optimal solutions, x-Strategy, Asymptotic expansions, Incomplete information.
Opis:
Klasyczny problem sekretarki został uogólniony na przestrzeni lat w kilku kierunkach. W niniejszym artykule ograniczamy nasze zainteresowanie do tych uogólnień, które mają związek z bardziej ogólnym problemem zatrzymania na ostatniej obserwacji określonego rodzaju. Problemy Brussa-Webera, które rozważamy, koncentrują się wokół następującego modelu: Obserwowany jest ciąg niezależnych zmiennych losowych o tym samym rozkładzie przyjmujących trzy wartości: +1; -1; 0. Celem jest maksymalizacja prawdopodobieństwa zatrzymania na wartości +1 lub -1 pojawiającej się po raz ostatni w sekwencji. Badamy pokrewne problemy zarówno z czasem dyskretnym, jak i ciągłym, ze znaną lub nieznaną liczbą obserwacji oraz znanym  i nieznanym rozkładem. W szczególności bierze się pod uwagę tak zwaną strategię z niepełną informacją. Nowością w niniejszej pracy jest udoskonalona analiza kilku problemów w tej klasie oraz badanie asymptotycznego zachowania się rozwiązań. Prezentujemy również symulacje odpowiednich kompletnych algorytmów wyboru.
The classical secretary problem has been generalized over the years into several directions. In this paper we confine our interest to those generalizations which have to do with the more general problem of stopping on a last observation of a specific kind. The Bruss-Weber problems we consider center around the following model: Let X1;X2;... ;Xn be a sequence of independent and identically distributed random variables which can take three values: {+1;-1; 0}. The goal is to maximize the probability of stopping on a value +1 or -1 appearing for the last time in the sequence. We study related problems both in discrete and continuous time settings, with known or unknown number of observations, and known and unknown probability measure. In particular, so called x-strategy with incomplete information is taken into consideration. Our contribution in the present paper is a refined analysis of several problems in this class and a study of the asymptotic behaviour of solutions. We also present simulations of the corresponding complete selection algorithms.
Źródło:
Mathematica Applicanda; 2017, 45, 2
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Odds -theorem and monotonicity
Optymalne zatrzymywanie w oparciu o algorytm ilorazu szans a monotoniczność wartości problemu
Autorzy:
Bruss, F. Thomas
Powiązania:
https://bibliotekanauki.pl/articles/953406.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Odds-algorithm
Secretary problem
Selection criteria
Multiple stopping problems
Group interviews
Games
Clinical trial
Prophet inequality
Opis:
Given a finite sequence of events and a well-defined notion of events being interesting, the Odds-theorem (Bruss(2000)) gives an online strategy to stop on the last interesting event. This strategy is optimal for independent events, and it is obtained in a straightforward way by an algorithm which is optimal itself (odds-algorithm). Here we study questions in how far the optimal value mirrors monotonicity properties of the underlying sequence of probabilities of events. We make these questions precise, motivate them, and then give complete answers. The motivation is enhanced by certain problems where it seems desirable to apply the odds-algorithm but where a lack of information does not allow to do so without incorporating sequential estimation. In view of this goal, the notion of a plug-in odds-algorithm is introduced. Several applications are included.
Źródło:
Mathematica Applicanda; 2019, 47, 1
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multiple stopping odds problem in Bernoulli Trials with random number of observations
Autorzy:
Kurushima, Aiko
Ano, Katsunori
Powiązania:
https://bibliotekanauki.pl/articles/747322.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
optimal stopping problem
selecting the last success
odds theorem
multiple stopping
Zagadnienie optymalnego zatrzymania
wybór ostatniego sukcesu
twierdzenie o względnych szansach
wielokrotne zatrzymywanie
Opis:
Praca poświęcona jest problemowi wielokrotnego, optymalnego zatrzymania ciągu prób Bernoulli'ego tak, aby zmaksymalizować prawdopodobieństwo wyboru ,,ostatniego sukcesu", gdy liczba prób jest zmienna losową. Podano warunki wystarczające na rozkład liczby obserwacji przy których spełnieniu strategia optymalna istnieje w klasie progowych momentów zatrzymania. Optymalne progi są definiowane z pomocą ,,ilorazów szans". Przykładem rozkładu, który należy do kasy spełniającej podane warunki jest rozkład jednostajny (ilorazy szans są nierosnące wraz z liczbą prób).
This paper studies an optimal multiple stopping problem, in which the objective is to maximize the probability of selecting the "last success" on Bernoulli trials with random number of observations under multiple selections. We propose the sufficient condition on the probability distribution of the number of observations for the optimal multiple stopping rule to be a threshold rule which is characterized by "odds". For example, uniform distribution satises the condition whenever the odd is not increasing in the number of trials.
Źródło:
Mathematica Applicanda; 2016, 44, 1
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies