Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "monotonicity" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
A note on strict K-monotonicity of some symmetric function spaces
Autorzy:
Ciesielski, Maciej
Kolwicz, Paweł
Płuciennik, Ryszard
Powiązania:
https://bibliotekanauki.pl/articles/745027.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Koethe space, K-monotonicity, strict K-monotonicity, symmetric
Opis:
We discuss some sufficient and necessary conditions for strict K-monotonicity of some important concrete symmetric spaces. The criterion for strict monotonicity of the Lorentz space \(\Gamma _{p,w}\) with \(0\)
Źródło:
Commentationes Mathematicae; 2013, 53, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Best constant approximants in Orlicz-Lorentz spaces
Autorzy:
Levis, F. E.
Cuenya, H. H.
Priori, A. N.
Powiązania:
https://bibliotekanauki.pl/articles/746619.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
best constant approximants
Orlicz-Lorentz spaces
monotonicity
Opis:
The best constant approximant operator is extended from an Orlicz-Lorentz space \(\Lambda_{w,\varphi}\) to the space \(\Lambda_{w,\varphi'}\), where \(\varphi'\) is the derivative of \(\varphi\). Monotonicity property of its extension is established.
Źródło:
Commentationes Mathematicae; 2008, 48, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characteristic of monotonicity of Orlicz function spaces equipped with the Orlicz norm
Autorzy:
Foralewski, Paweł
Hudzik, Henryk
Kaczmarek, Radosław
Krbec, Miroslav
Powiązania:
https://bibliotekanauki.pl/articles/746439.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Orlicz space
Orlicz norm
Kothe space
Kothe dual
characteristic of monotonicity
strict monotonicity
point of order smoothness
Opis:
We first prove that the property of strict monotonicity of a~K\"othe space \((E,\|.\|_E)\) and\slash or of its K\"othe dual \((E',\|.\|_{E'})\) can be used successfully to compare the supports of \(x\in E\backslash\{\theta\}\) and \(y\in S(E')\), where \(=\|x\|_E\). Next we prove that any element \(x\in S_{+}(E)\) with \(\mu(T\backslash\operatorname{supp} x)=0\) is a~point of order smoothness in \(E\), whenever \(E\) is an order continuous K\"othe space. Finally, we present formulas for the characteristic of monotonicity of Orlicz function spaces endowed with the Orlicz norm in the case when the generating Orlicz function does not satisfy suitable \(\Delta_2\)-condition or the measure is non-atomic infinite, and some lower and upper estimates for the characteristic of monotonicity of this spaces when the measure is non-atomic and finite.
Źródło:
Commentationes Mathematicae; 2013, 53, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geometric properties of Orlicz spaces equipped with \(p\)-Amemiya norms − results and open questions
Autorzy:
Wisła, Marek
Powiązania:
https://bibliotekanauki.pl/articles/746287.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
rotundity
non-squareness
uniform monotonicity
dominated best approximation problem
Amemiya type norm
Opis:
The classical Orlicz and Luxemburg norms generated by an Orlicz function \(\Phi\) can be defined with the use of the Amemiya formula [H. Hudzik and L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. 11 (2000), no. 4, 573-585]. Moreover, in this article Hudzik and Maligranda suggested investigating a family of p-Amemiya norms defined by the formula \(\|x\|_{\Phi,p}=\inf_{k>0} \frac{1}{k} (1+I_\Phi^p(kx))^{1/p}\), where \(1\le p\le\infty\) (under the convention: \((1+u^\infty)^{1/\infty}=\lim_{p\to\infty}(1+u^p)^{1/p}=\max{1,u}\) for all \(u\ge 0\)). Based on this idea, a number of papers have been published in the past few years. In this paper, we present some major results concerning the geometric properties of Orlicz spaces equipped with p-Amemiya norms. In the last section, a more general case of Amemiya type norms is investigated. A few open questions concerning this theory will be stated as well.
Źródło:
Commentationes Mathematicae; 2015, 55, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-square points of Orlicz-Lorentz function spaces
Autorzy:
Kończak, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/1912841.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Non-square points
non-squareness
Orlicz−Lorentz space
Lorentz space
Orlicz function
Luxemburg norm
strict monotonicity
Opis:
In this paper, criteria for non-square points in Orlicz−Lorentz function spaces \(\Lambda_{\varphi, \omega}\) endowed with the Luxemburg norm are given. The widest possible classes of convex Orlicz functions and weight functions are admitted. In consequence, criteria for non-square points in Orlicz spaces \(L^{\varphi}\), which generalize the already known results, are presented.
Źródło:
Commentationes Mathematicae; 2019, 59, 1-2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local structure of generalized Orlicz−Lorentz function spaces
Autorzy:
Kolwicz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/746354.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
symmetric spaces
symmetrization of the Banach function space
generalized Orlicz-Lorentz space
Musielak-Orlicz space
monotonicity properties
order continuity
local structure of a separated point
Opis:
We study the local structure of a separated point \(x\) in the generalized Orlicz-Lorentz space \(\Lambda ^{\varphi }\) which is a symmetrization of the respective Musielak-Orlicz space \(L^{\varphi }\). We present criteria for an \(LM\) point and a \(\mathit{UM}\) point, and sufficient conditions for a point of order continuity and an \(\mathit{LLUM}\) point, in the space \(\Lambda ^{\varphi }\). We prove also a characterization of strict monotonicity of the space \(\Lambda ^{\varphi }\).
Źródło:
Commentationes Mathematicae; 2015, 55, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geometric properties of noncommutative symmetric spaces of measurable operators and unitary matrix ideals
Autorzy:
Czerwińska, Malgorzata M.
Kaminska, Anna H.
Powiązania:
https://bibliotekanauki.pl/articles/746224.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Symmetric spaces of measurable operators
unitary matrix spaces
rearrangement invariant spaces
k-extreme points
k-convexity
complex extreme points
complex convexity
monotonicity
(local) uniform (complex and real) convexity
p-convexity
Opis:
This is a review article of geometric properties of noncommutative symmetric spaces of measurable operators \(E(\mathcal{M},\tau)\), where \(\mathcal{M}\) is a semifinite von Neumann algebra with a faithful, normal, semifinite trace \(\tau\), and \(E\) is a symmetric function space. If \(E\subset c_0\) is a symmetric sequence space then the analogous properties in the unitary matrix ideals \(C_E\) are also presented. In the preliminaries we provide basic definitions and concepts illustrated by some examples and occasional proofs. In particular we list and discuss the properties of general singular value function, submajorization in the sense of Hardy, Littlewood and Pólya, Köthe duality, the spaces \(L_p\left(\mathcal{M},\tau\right)\), \(1\leq p < \infty\), the identification of \(C_E\) and \(G(B(H), \operatorname{tr})\) for some symmetric function space \(G\), the commutative case when \(E\) is identified with \(E(\mathcal{N}, \tau)\) for \(\mathcal{N}\) isometric to \(L_\infty\) with the standard integral trace, trace preserving \(*\)-isomorphisms between \(E\) and a \(*\)-subalgebra of \(E\left(\mathcal{M},\tau\right)\), and a general method for removing the assumption of non-atomicity of \(\mathcal{M}\). The main results on geometric properties are given in separate sections. We present the results on (complex) extreme points, (complex) strict convexity, strong extreme points and midpoint local uniform convexity, \(k\)-extreme points and \(k\)-convexity, (complex or local) uniform convexity, smoothness and strong smoothness, (strongly) exposed points, (uniform) Kadec−Klee properties, Banach−Saks properties, Radon−Nikodym property and stability in the sense of Krivine−Maurey. We also state some open problems.
Źródło:
Commentationes Mathematicae; 2017, 57, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies