- Tytuł:
- Uniform \(\lambda\)-property in \(L^1\cap L^\infty\)
- Autorzy:
-
Bohonos, Adam
Płuciennik, Ryszard - Powiązania:
- https://bibliotekanauki.pl/articles/746352.pdf
- Data publikacji:
- 2015
- Wydawca:
- Polskie Towarzystwo Matematyczne
- Tematy:
-
\(\lambda\)-property
uniform \(\lambda\)-property
interpolation spaces
convex series representation property - Opis:
- Here it is proved that the space \(L^{1}\cap L^{\infty }\) equipped with the standard interpolation norm \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}=\max \left\{ \left\Vert \cdot \right\Vert _{L^{1}},\left\Vert \cdot \right\Vert _{L^{\infty }}\right\} \) has the uniform \(\lambda \)-property if and only if \(\mu (T)\leq 1.\) Replacing the standard norm with an equivalent one \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime }= \) \(\left\Vert \cdot \right\Vert _{L^{1}}+\left\Vert \cdot \right\Vert _{L^{\infty }}\), a different result is obtained.: \((L^{1}\cap L^{\infty }, \left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime } )\) has the uniform \(\lambda \)-property if and only if \(\mu (T)
- Źródło:
-
Commentationes Mathematicae; 2015, 55, 2
0373-8299 - Pojawia się w:
- Commentationes Mathematicae
- Dostawca treści:
- Biblioteka Nauki