Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "convex series representation property" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Uniform \(\lambda\)-property in \(L^1\cap L^\infty\)
Autorzy:
Bohonos, Adam
Płuciennik, Ryszard
Powiązania:
https://bibliotekanauki.pl/articles/746352.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
\(\lambda\)-property
uniform \(\lambda\)-property
interpolation spaces
convex series representation property
Opis:
Here it is proved that the space \(L^{1}\cap L^{\infty }\) equipped with the standard interpolation norm \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}=\max \left\{ \left\Vert \cdot \right\Vert _{L^{1}},\left\Vert \cdot \right\Vert _{L^{\infty }}\right\} \) has the uniform \(\lambda \)-property if and only if \(\mu (T)\leq 1.\) Replacing the standard norm with an equivalent one \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime }= \) \(\left\Vert \cdot \right\Vert _{L^{1}}+\left\Vert \cdot \right\Vert _{L^{\infty }}\), a different result is obtained.: \((L^{1}\cap L^{\infty }, \left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime } )\) has the uniform \(\lambda \)-property if and only if \(\mu (T)
Źródło:
Commentationes Mathematicae; 2015, 55, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies