- Tytuł:
- Solution of the Fredholm integral equation of the second kind using spline functions
- Autorzy:
- Jabłoński, Zdzisław
- Powiązania:
- https://bibliotekanauki.pl/articles/748607.pdf
- Data publikacji:
- 1982
- Wydawca:
- Polskie Towarzystwo Matematyczne
- Tematy:
- Theoretical approximation of solutions,Fredholm integral equations,Integral equations
- Opis:
-
.
The author presents a polynomial spline function method for solution of the linear Fredholm integral equation f(s)+K1f(s)=φ(s), where K1f(s)=∫CK(s,t)f(t)dt, τ∈[0,2π], and C is a Jordan curve. The method is as follows: The approximate equation for the function fδ(s) is (1) fδ+K1δfδ=φ, where K1δ=K1Tδ, and (2) Tδf(t)=∑n−1i=0f(ti)Wi4(t)Ni1(t). Here Wi4(t) is a spline function, i.e., a 3rd degree polynomial, and Ni1(t)=1 for t∈[ti,ti+1) and Ni1(t)=0 for t∉[ti,ti+1). The substitution of (2) into (1) leads to the equation fδ(s)+∑n−1i=0fδ(ti)K1ei4(s)=φ(s), where ei4(t)=Wi4(t)Ni1(t), i=0,⋯,n−1. The coefficients satisfy the equations fδ(tl)+∑i=0n−1fδ(ti)K1ei4(tl)=φ(tl),l=0,⋯,n−1. The author gives an estimate for ∥fδ−f∥C, and ends the article with an example. - Źródło:
-
Mathematica Applicanda; 1982, 10, 19
1730-2668
2299-4009 - Pojawia się w:
- Mathematica Applicanda
- Dostawca treści:
- Biblioteka Nauki