Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "approximation equations" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Solution of the Fredholm integral equation of the second kind using spline functions
Autorzy:
Jabłoński, Zdzisław
Powiązania:
https://bibliotekanauki.pl/articles/748607.pdf
Data publikacji:
1982
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Theoretical approximation of solutions,Fredholm integral equations,Integral equations
Opis:
.
The author presents a polynomial spline function method for solution of the linear Fredholm integral equation f(s)+K1f(s)=φ(s), where K1f(s)=∫CK(s,t)f(t)dt, τ∈[0,2π], and C is a Jordan curve. The method is as follows: The approximate equation for the function fδ(s) is (1) fδ+K1δfδ=φ, where K1δ=K1Tδ, and (2) Tδf(t)=∑n−1i=0f(ti)Wi4(t)Ni1(t). Here Wi4(t) is a spline function, i.e., a 3rd degree polynomial, and Ni1(t)=1 for t∈[ti,ti+1) and Ni1(t)=0 for t∉[ti,ti+1). The substitution of (2) into (1) leads to the equation fδ(s)+∑n−1i=0fδ(ti)K1ei4(s)=φ(s), where ei4(t)=Wi4(t)Ni1(t), i=0,⋯,n−1. The coefficients satisfy the equations fδ(tl)+∑i=0n−1fδ(ti)K1ei4(tl)=φ(tl),l=0,⋯,n−1. The author gives an estimate for ∥fδ−f∥C, and ends the article with an example.
Źródło:
Mathematica Applicanda; 1982, 10, 19
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies