Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "water exchange" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Comparison the Adsorption Capacity of Ukrainian Tuff and Basalt with Zeolite–Manganese Removal from Water Solution
Autorzy:
Trach, Yuliia
Tytkowska-Owerko, Marta
Reczek, Lidia
Michel, Magdalena M.
Powiązania:
https://bibliotekanauki.pl/articles/1839128.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
water treatment
natural sorbent
ion exchange minerals
saponite
hematite
andesine
Opis:
Manganese is an undesirable element in tap water but is common in the groundwater. Several methods can be used for manganese removal, including adsorption. Mined rocks are commonly evaluated as adsorbents and it was the objective of this paper – to investigate the Ukrainian volcanic tuff and basaltic rock from the Ivanodolinsky quarry and compare it with Ukrainian zeolite as well as with literature data. The research was based on equilibrated batch tests at a temperature of 10°C and slightly acidic pH. The data were treated using Langmuir and Freundlich models in the linear form. The results indicated the spontaneous and favourable adsorption of manganese. The volcanic tuff was characterized by the highest adsorption capacity, twice higher than basalt and zeolite. The heterogeneity of the active adsorption sites on the tuff was also greater and resulted from the diversity of the mineral composition. Considering the literature data, the properties of tuff are worth further research.
Źródło:
Journal of Ecological Engineering; 2021, 22, 3; 161-168
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Long-Term Retardation of Water Evaporation by Ultra-Thin Layers of Polydimethylsiloxanes in the Indoor Conditions
Autorzy:
Zhuk, Volodymyr
Rehush, Andriy
Burchenya, Sofiya
Hrytsiv, Oleh
Powiązania:
https://bibliotekanauki.pl/articles/1955471.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
evaporation
retardation
mass exchange coefficient
monolayer
polydimethylsiloxane
ultrathin layer
water balance
Opis:
Global climate change is causing water imbalances in many regions of the world to exceed evaporation over rainfall, leading to negative environmental consequences and economic losses. An effective way to reduce the water loss due to evaporation from the free surface of water bodies is the use of ultra-thin surface films of special additives. Insufficient stability and significant cost of additives based on fatty alcohols (hexadecanol, octadecanol and their mixtures) necessitate searching for new effective and more economical additives to reduce the water loss due to evaporation. A series of long-term (84 day) experimental studies of the effect of ultra-thin layers of polydimethylsiloxanes PDMS100 and PDMS-200 with a thickness of 1 μm on the rate of evaporation of water from the free surface was conducted under the indoor laboratory conditions. Both the dynamics of change in time of daily values of the effect of evaporation retardation by PDMS films, and total effect from the beginning of experiment were obtained. The maximum daily effects of evaporation retardation were obtained on the 6th day of the study; they are 39.5% for the PDMS-200 film and 32.9% for the PDMS-100 film, respectively. Linear correlations are obtained between the values of the mass transfer coefficient and the free surface temperature for water without additives, as well as for the same free surfaces with ultra-thin PDMS films. Overall integral efficiency of evaporation retardation by the PDMS-200 film with a thickness of 1 μm for 84 days was equal to 17.2%, while for the PDMS-100 film of the same thickness a reduction of evaporation by 5.7% was obtained. Due to the long-term activity, ultra-thin films of polydimethylsiloxanes, especially PDMS-200, can be a profitable alternative to the use of monolayers based on fatty alcohols.
Źródło:
Journal of Ecological Engineering; 2021, 22, 8; 33-40
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Usage of Sorbent-Catalyst to Accelerate the Oxidation of Manganese
Autorzy:
Gomelya, Mykola
Tverdokhlib, Mariia
Shabliy, Tetyana
Linyucheva, Olga
Powiązania:
https://bibliotekanauki.pl/articles/1839661.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
manganese(II) ion
oxidation
catalyst
sorbent
modified cation exchange resin
water purification
magnetite
Opis:
The processes of manganese (II) ions removal from water using sorbent catalysts and ion exchange materials modified with iron oxides were studied. It was shown that manganese ions oxidize very slowly in artesian water, even when the pH is adjusted to 9.0. Intensive aeration of solutions due to stirring also does not promote the oxidation of manganese (II) ions. The degree of manganese extraction due to oxidation is reduced from 20–30% for solutions with a concentration of manganese ions of 1 and 5 mg/dm3 to 11–15% for solutions with a concentration of 15 and 30 mg/dm3. A significant increase in the oxidation efficiency of manganese ions was achieved by using magnetite as a sorbent catalyst. The efficiency of water demanganization increases along with the intensity of water aeration when mixing solutions. It was established that strongly acid cation exchangers provide efficient extraction of manganese ions from water. At the same time, a high exchange capacity of strong acid cation exchange resin KU-2–8 in acid and salt form was noted. It was shown that the capacity of manganese ions of this cation exchange resin in the Ca2+-form is slightly lower. When using the KU-2–8 in Ca2+-form of cation exchange resin to remove manganese ions from the solution already in the first samples, the leakage of manganese ions at the level of 10 mg/dm3 and above was observed. This indicates that this form of ion exchanger is not suitable for deep purification of water from manganese (II) ions. In order to increase the efficiency of manganese ion extraction from water, increase the duration of the filter cycle, magnetite and magnetite-modified KU-2–8 cation exchange resin were used as a sorbent-catalyst. It was shown that the cation exchange resin modified with magnetite provides the removal of a significant part of manganese ions due to catalytic oxidation on magnetite. The conditions of effective manganese extraction under static and dynamic conditions are determined.
Źródło:
Journal of Ecological Engineering; 2021, 22, 4; 232-239
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies