Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "vegetation condition" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Agricultural Droughts Monitoring of Aceh Besar Regency Rice Production Center, Aceh, Indonesia – Application Vegetation Conditions Index using Sentinel-2 Image Data
Autorzy:
Sugianto
Rusdi, Muhammad
Budi, Muhammad
Farhan, Ahmad
Akhyar
Powiązania:
https://bibliotekanauki.pl/articles/2202332.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
drought monitoring
VCI
vegetation condition index
sentinel-2A
vegetation health index
Opis:
Monitoring the agricultural drought of paddy rice fields is a crucial aspect of preparing for proper action in maintaining food security in Indonesia. The Aceh Province is one of Indonesia’s national rice production centers, especially Aceh Besar Regency; it includes three central districts; Indrapuri, Kuta Cot Glie, and Seulimeum. Satellite-Sentinel 2A data have been tested to monitor the drought levels of around 2,803 Ha in the three districts in this study. This study aimed to determine the drought level in Indrapuri, Kuta Cot Glie, and Seulimeum districts, Aceh Besar Regency’s paddy rice fields using Sentinel-2A data imagery. The vegetation conditions index (VCI) of Sentinel-2 data was utilized to identify a vegetative drought level in the area for the 2018, 2019, 2020, 2021, and 2022 growing seasons. The vegetation inertia index is derived from the Normalized Difference Vegetation Index (NDVI). The results show that the VCI looked volatile, but the trendline increased by four percent, from 92.56 in July 2019 to 96.08 in July 2021. Most areas on the dates investigated found that the no drought category was still dominant. The designated data analyzed found that the June 2022 data tend to be distributed to the drought in extreme, severe, moderate, and mild increases compared to the previous data investigated. This figure shows an increasing drought in the study area, and the average drought index is in the category of mild drought. In addition, there has been a trendline decline in the value of NDVI in recent years, causing agricultural land for paddy rice fields to be slightly vulnerable to drought.
Źródło:
Journal of Ecological Engineering; 2023, 24, 1; 159--171
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena stanu roślinności na zielonych ścianach z wykorzystaniem metod teledetekcyjnych
Condition of vegetation on the green wall with the use of remote sensing methods
Autorzy:
Skarżyński, D.
Pływaczyk, A.
Pęczkowski, G.
Powiązania:
https://bibliotekanauki.pl/articles/399545.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
teledetekcja
NDVI
ocena stanu roślinności
zielone ściany
pokrycie
remote sensing
evaluation of vegetation condition
green walls
coverage
Opis:
Badania nad możliwością wykorzystania metod teledetekcyjnych w celu oceny stanu roślinności na zielonych ścianach wykonano na modelach doświadczalnych w latach 2010–2011. Analizowano dwa modele różniące się pomiędzy sobą podłożem wegetacyjnym: model retencyjny (MR I) z substratem glebowym oraz model ekonomiczny (ME II) z filcem hydroponicznym. W poszczególnych panelach posadzono rośliny reprezentujące krzewy, byliny oraz trawy. Łącznie na modelach doświadczalnych zastosowano 60 gatunków roślin dobranych w zależności od wystawy ścian. Ocenę kondycji roślin wykonano na podstawie prowadzonych obserwacji terenowych oraz analizy znormalizowanego wskaźnika roślinności NDVI (ang. Normalized Difference Vegetation Index). Stwierdzono, że roślinność na modelu retencyjnym (MR I) posiada znacznie wyższe wartości wskaźnika NDVI w porównaniu z modelem ekonomicznym (ME II). Porównanie procentowego pokrycia paneli modelu retencyjnego (MR I) i ekonomicznego (ME II) przez roślinny wykonano poprzez oddzielenie płaszczyzny tła od powierzchni roślin, ustalając jako kryterium podziału wskaźnik NDVI z przedziału od -1 do 0,2. Wykazano wyraźny kontrast pomiędzy stopniem pokrycia na badanych modelach na poszczególnych elewacjach. Na modelu retencyjnym (MR I) pokrycie paneli roślinami było znacznie większe niż na modelu ekonomicznym (ME II), gdzie rozwój roślin był ograniczony. Rozwój roślinności na modelu retencyjnym (MR I) z wykorzystaniem substratu glebowego w panelach roślinnych był prawidłowy co wskazuje na możliwość stosowania tego typu rozwiązań w warunkach klimatycznych Dolnego Śląska. Roślinność na modelu ekonomicznym (ME II) charakteryzuje gorszy rozwój w całym okresie wegetacyjnym, dlatego też nie jest on zalecany. Badania wykazały, że możliwa jest ocena stanu roślinności na zielonych ścianach z wykorzystaniem metod teledetekcyjnych bazujących na zmodyfikowanym sprzęcie fotograficznym.
Research on the possibility of using remote sensing methods to evaluate condition of vegetation on the green walls were performed on experimental models in 2010–2011. Two models that differ from one another with vegetation layer were analyzed: a retention model (MR I) with substrate soil and an economic model (ME II) with hydroponic felt. In the individual panels plants representing shrubs, perennials and grasses were planted. In total, on experimental models 60 plant species was applied depending on the exhibition of the walls. The evaluation of the plants condition was performed based on field observations and the analysis of Normalized Difference Vegetation Index (NDVI). Evaluation of vegetation condition using remote sensing methods leads to the conclusion that the vegetation on retention model (MR I) have a much higher NDVI index value compared with the economic model (ME II). The comparison of the percent coverage of panels on retention model (MR I) and economic model (ME II) by the plants was done by separating the background plane from the plant surface. As a division criterion NDVI ratio in the range from -1 to 0.2 was taken. The results showed a clear contrast between the level of plant coverage of the examined models for individual facades. On the retention model (MR I) panels plant covering was significantly higher than on an economic model (ME II) where plant growth was limited. The growth of vegetation on the retention model (MR I) using substrate soil in plant panels was normal suggesting the potential use of such solutions in the climatic conditions of Lower Silesia. Vegetation on the economic model (ME II) is characterized by a worse growth throughout the growing season, which is why it is not recommended. The study showed that it is possible to evaluate the conditions of vegetation on the green walls with the use of remote sensing methods based on a modified photographic camera.
Źródło:
Inżynieria Ekologiczna; 2015, 43; 166-171
2081-139X
2392-0629
Pojawia się w:
Inżynieria Ekologiczna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies