Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "energy management" wg kryterium: Wszystkie pola


Wyświetlanie 1-13 z 13
Tytuł:
Impact of Selected Technical Soil Parameters on the Greenhouse Energy Management
Autorzy:
Nawalany, Grzegorz
Sokołowski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/125003.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
heat exchange
soil
greenhouse
energy management
soil type
Opis:
The paper is an attempt to determine the impact of soil type and its selected technical parameters on the heat exchange with soil. The test results were based on the all-year-round experimental measurements of soil temperature and indoor and outdoor air in a greenhouse located in southern Poland. The field tests results were used to validate the calculation model using the WUFIplus software. The validation showed a high degree of conformity between the experiments and calculations. Five variants were used in the calculations, differentiated by technical parameters of the soil underneath the greenhouse. The results showed a significant impact of the soil type on the greenhouse energy management.
Źródło:
Journal of Ecological Engineering; 2019, 20, 9; 245-252
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cold storage-supported air conditioning system in urban transport vehicles
Autorzy:
Jarzyna, W.
Zielinski, D.
Aftyka, M.
Fatyga, K.
Powiązania:
https://bibliotekanauki.pl/articles/124731.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
thermal energy storage
electric city bus
energy management
Opis:
A bottleneck for the development of public transport vehicles is their electricity supply. Electric buses are almost exclusively equipped with electrochemical batteries, while nearly 40% of the energy is used in the processes of air conditioning. For this reason, we developed and built a demonstration system for storing thermal energy in public transport vehicles. The most important effects are: significant reduction of financial expenses and of the total weight of all batteries with the same amount of stored energy.
Źródło:
Journal of Ecological Engineering; 2016, 17, 5; 120-127
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A New Prototype Design and Experimental Study for Assessing Spontaneous Coal Combustion
Autorzy:
Aryansyah, -
Ibrahim, Eddy
Nasir, Subriyer
Said, Muhammad
Kurniawan, Ian
Huda, Adri
Powiązania:
https://bibliotekanauki.pl/articles/952386.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
coal
spontaneous combustion
energy management
environmental technology
oxidation
Opis:
This present study contribute to provide a simple technology to early detect the phenomenon of spontaneous coal combustion. A new prototype is designated to detect the CO gas formation as a product of initial coal oxidation. Moreover, several parameters including coal quality, coal weight sample, ambient temperature, and air flow were employed to investigate the effects of each parameter to the CO formation time. The results show that the coal characterisation have a significant effect in the CO formation time where the coal having a higher fixed carbon and high grass calorific values provide the high liability of spontaneous coal combustion. However, these finding only occurred in low weight sample where in the high coal weight sample only fixed carbon plays the main role in determining the CO formation time. Furthermore, the prototype ambient temperature become the important parameter in the boosting of CO formation time where airflow only enhance the CO formation time in low temperature condition (below 29°C). Moreover, these findings opens a new sight in coal management, especially in Indonesia, where controlling the coal and atmosphere temperature could effectively prevent the spontaneous coal combustion especially in coal stockpile. Nevertheless, the other factor including airflow and coal weight sample also need perfect controlling because all of these factors potentially create a perfect environment to combust the coal spontaneously.
Źródło:
Journal of Ecological Engineering; 2019, 20, 6; 9-17
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems
Autorzy:
Atieh, A.
Al Asfar, J.
Tawalbeh, N.
Shaqour, E.
Alsalhi, I.
Istaiteh, O.
Powiązania:
https://bibliotekanauki.pl/articles/123359.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
smart cooling system
solar system
energy management
cost analysis
Opis:
A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR) each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s). The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.
Źródło:
Journal of Ecological Engineering; 2018, 19, 2; 39-44
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Hygrothermal Conditions of External Partitions in an Underground Fruit Store
Autorzy:
Nawalany, G.
Sokołowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/123816.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
fruit store
energy management
heat exchange
hygrothermal conditions of partitions
Opis:
The paper presents the analysis of hygrothermal conditions of external partitions in an underground fruit store. The results of measurements of temperature and humidity of the indoor and outdoor air as well as the surface surrounding temperature and the temperature of the air surrounding the store constituted the boundary conditions for the hygrothermal calculations. The paper presents the calculation of the distribution of the temperature and humidity on the ground floor, the wall contacting the ground, the wall contacting the outside air, and the ceiling above the storage chamber. The heat and moisture calculations have shown high risk of condensation submerged in non-insulated external walls. The condition of the adaptation of a traditional cold store to a simple and atmosphere controlled cold one is to increase the thermal resistance of the partitions. Such a solution will let cut the energy demand in those types of agricultural buildings.
Źródło:
Journal of Ecological Engineering; 2016, 17, 4; 75-82
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza gospodarki osadowej i biogazowo-energetycznej w oczyszczalni ścieków w Opolu
Analysis of sewage sludge and biogas-energy management at the Opole wastewater treatment plant
Autorzy:
Szczyrba, Paulina
Masłoń, Adam
Czarnota, Joanna
Olszewski, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/399850.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
osady ściekowe
fermentacja beztlenowa
biogaz
energochłonność oczyszczalni ścieków
sewage sludge
anaerobic digestion
biogas
energy consumption
wastewater treatment plant
Opis:
Zwiększające się wymagania oczyszczania ścieków oraz rozwój systemów oczyszczania ścieków, unieszkodliwiania i przeróbki osadów ściekowych powodują znaczny wzrost zapotrzebowania na energię elektryczną i cieplną. Alternatywnym sposobem na pozyskiwanie taniej energii jest wykorzystywanie biogazu wytworzonego w procesie fermentacji z osadów ściekowych. W pracy przedstawiono analizę gospodarki osadowej i biogazowo-energetycznej w oczyszczalni ścieków w Opolu w aspekcie uzyskiwania biogazu i jego wykorzystania do produkcji energii elektrycznej. Układ biogazowo-energetyczny w rozpatrywanym okresie funkcjonował prawidłowo. W dwóch agregatach prądotwórczych wyprodukowano z biogazu łącznie 7,26 GWh energii elektrycznej, co pozwoliło na pokrycie blisko 35% zapotrzebowania na energię elektryczną.
Increasing requirements of wastewater treatments and the development of wastewater treatment and sewage sludge systems cause a significant increase in the demand for electricity and heat. An alternative way to obtain cheap energy is to use biogas produced in the anaerobic digestion process from sewage sludge. The paper presents an analysis of sewage sludge and biogas-energy management at the wastewater treatment plant in Opole in the aspect of obtaining biogas and its use for electricity production. The biogas-energy system was functioning properly in 2017–2019. A total of 7.26 GWh of electricity was produced from biogas in two power generators, which allowed to cover nearly 35% of the demand for electricity.
Źródło:
Inżynieria Ekologiczna; 2020, 21, 2; 26-34
2081-139X
2392-0629
Pojawia się w:
Inżynieria Ekologiczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected Aspects of Development Towards Energy Efficient Buildings
Autorzy:
Wójcicka-Migasiuk, D.
Paśnikowska-Łukaszuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/124608.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
low energy buildings
thermal-visual measurements
biofuel
waste management aspects
Opis:
The focal point is to present the areas where the technology in buildings can be supported by proper motivation and take substantial advantage measurable in technical units. The need to understand the integration between ecology, society, economy and technology is crucial when global improvements are the targets. These targets should consider urban environments as natural human settlement, in the understanding that accepts human psychological needs for wide and deep education, acquiring highly professional satisfaction without resigning from family style of life and leisure as natural. It is necessary to accept human production also in its advanced levels as a natural human activity and to combine it with the other afore-mentioned components of integration. Attention has been directed to clean energy certification in newly constructed objects and refurbished buildings, formation of owner’s responsibility for the possessed goods and their best use in sustainable development. Particular attention has been drawn to the increasingly popular manner of using resources only if it is justified by proportionally very high advantages to the society. This has been presented with the examples of energy savings in low energy and passive buildings. Moreover, the examples show the ways of sustainable development which include the use of renewable energy, using coal only in collective industrial systems very restricted in terms of protection against pollution and uncontrolled use of energy, and similarly, of other conventional fuels, water and land.
Źródło:
Journal of Ecological Engineering; 2017, 18, 5; 137-143
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efficiency Analysis of the Generation of Energy in a Biogas CHP System and its Management in a Waste Landfill – Case Study
Autorzy:
Ciuła, Józef
Generowicz, Agnieszka
Gaska, Krzysztof
Gronba-Chyła, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2173248.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
cogeneration
energy efficiency
energy ratio
landfill gas
municipal waste
renewable energy
Opis:
As a waste neutralization facility, the landfill is a kind of bioreactor producing landfill gas or (LFG) - biogas, which should be captured and neutralised for environmental reasons. One of the ways of its utilisation is the combined production of heat and electrical energy in combined heat and power (CHP) cogeneration systems. For that purpose, the assessment of the energy efficiency of a cogeneration unit was undertaken in this work on the basis of the unit performance over the last 5 years. The analysis of the CHP system energy performance demonstrated that the ratios range at the lower limits for units up to 0.5 MW. The lower efficiency of fuel chemical conversion in the CHP plant (0.70) stems from the failure to use the rated thermal and electrical power fully (74.2%), which is caused by the insufficient stream of biogas collected from the landfill (161.46 m3∙h-1). The analysis of the generated energy usage, particularly in terms of heat, has shown a surplus which is not used and therefore is a loss. The proposed solutions in this area should optimize the use of heat generated from the renewable source, i.e. landfill biogas.
Źródło:
Journal of Ecological Engineering; 2022, 23, 7; 143--156
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biogas Production from Raw Digestate and its Fraction
Autorzy:
Czekała, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/124971.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
digestate
digested pulp
agricultural biogas plants
anaerobic digestion
waste management
renewable energy sources
circular economy
Opis:
The digestate from an agricultural biogas plant is most commonly used as a fertilizer. However, many studies are being performed to develop other ways of managing this substrate. The aim of this study was to determine the biogas and methane efficiency for digestate as well as the solid and liquid fractions from separation of digestate. The material for the research came from a real scale agricultural biogas plant. The separation of the digestate into two fractions was carried out using a mechanical press. The studies on the methane fermentation process were carried out under mesophilic conditions (37–39°C) in the Institute of Biosystems Engineering at the Poznań University of Life Sciences. It was found that the biogas and methane efficiency for the raw digestate and liquid fraction obtained from its separation is very low. For raw digestate it was 2.9 m3 of biogas from 1 Mg fresh matter (FM), including 1.58 m3 methane. For liquid fraction after separation, the biogas efficiency amounted to 1.52 m3 from 1 Mg, including 0.78 m3 of methane. In turn, for the solid fraction, the biogas efficiency was 102.93 m3∙Mg-1, including 54.99 m3∙Mg-1 of methane. The research results indicate that the possibility of using the digestate solid fraction for energy production (e.g. secondary methane fermentation) or the production of solid biofuels.
Źródło:
Journal of Ecological Engineering; 2019, 20, 6; 97-102
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Refuse Derived Fuel Potential Production from Temple Waste as Energy Alternative Resource in Bali Island
Autorzy:
Wijaya, I. Made Wahyu
Wiratama, I. Gusti Ngurah Made
Putra, I. Kadek Ardi
Aris, Azmi
Powiązania:
https://bibliotekanauki.pl/articles/24201724.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
temple waste
refuse derived fuel
renewable energy
sustainable waste management
waste recycling
pyrolysis
Opis:
The leakage of temple waste in the environment surrounding the temples has made the image of temples not only a cultural icon but also a contributor to landfill waste on the island. About 292.36 kg of temple waste is generated from a single ceremonial at Griya Anyar Tanah Kilap Temple. The temple waste consists of 90,16% of organic waste (food, leaf and discarded flower) that is easily biodegraded. This research aimed to examine the temple waste to be recycled into Refuse Derived Fuel (RDF). Leaf and flower waste are used as RDF material using two different drying methods, namely natural drying and pyrolysis. The results showed that the pyrolysis RDF has a similar caloric value to the natural drying RDF with 3311.7 kcal/kg and 2912.7 kcal/kg, respectively. According to the electrical power potential, pyrolysis RDF has 3856.19 kWh/tons, meanwhile natural drying RDF has 3391.59 kWh/tons. The pyrolysis RDF has less organic content and quite higher ash content than the natural drying RDF, making it better quality and appropriate to be applied in the community for a long-term sustainable temple waste recycling.
Źródło:
Journal of Ecological Engineering; 2023, 24, 4; 288--296
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Features of Refuse Derived Fuel in Poland – Physicochemical Properties and Availability of Refuse Derived Fuel
Autorzy:
Nowak, Martyna
Powiązania:
https://bibliotekanauki.pl/articles/24201786.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
waste management
waste incineration
waste to energy
refuse derived fuel
Opis:
Refuse Derived Fuels are used as energy carrier mainly in cement plants; however, more and more often they are applied in power plants as a substitute for fossil fuels. In order to prepare a proper waste-to-energy investment, the availability of the fuel, as well as fuel properties should be determined. The article presented the amounts of generated RDF in Poland, number installation which produced RDF in 2019 and 2020 and amounts of incinerated RDF in cement and incineration plants. The amount of generated RDF is rather constant – about 2.5 million Mg/year. RDF is mainly incinerated in cement plants – about 1.5 million Mg/year. The article also presented general physicochemical analysis of several RDF samples and coal. Some of the RDF samples reached high energy parameters – low heating value up to 25 MJ/kg; however, the properties vary a lot, due to their heterogeneous character, technological process of their production and other factors. In practice, the requested parameters and amount of RDF are established and the RDF producer prepares and delivers the fuel according to the concluded contract.
Źródło:
Journal of Ecological Engineering; 2023, 24, 3; 1--9
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the Energetic Use of Fuel Fractions Made of Plastic Waste
Autorzy:
Marczak, Halina
Powiązania:
https://bibliotekanauki.pl/articles/125200.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
management of waste
recovery of plastic waste
waste plastic
energy use of waste
waste processing
depolymerisation
plastic waste
Opis:
The overriding principle of waste management (already produced) is their reuse or use as secondary materials. It is consistent with the concept of a circular economy. Recycling materials and raw materials have the highest rank in the field of waste processing. For non-recyclable waste, other recovery processes also play a role. In the case of plastic waste, economically and ecologically justified processes of thermal transformation and catalytic depolymerisation leading to the formation of fuel fractions destined for energetic use may be useful. This direction of polymer waste processing is justified by the high calorific value of plastics. In the objective evaluation of waste treatment technologies, from the point of view of economics and environmental protection, it may be helpful to analyse the energy balance. The aim of the article is to analyse and evaluate the energy efficiency of using a mixture of hydrocarbons obtained in the process of catalytic depolymerisation of plastic waste based on the energy efficiency index for energy purposes. The efficiency index is calculated as the quotient of energy benefits and energy inputs for the use of depolymerisation products. Energy expenditure includes expenditures incurred in individual stages of the life cycle of a liquid product made of plastic waste. The conducted analysis showed that the energy use in the post-use phase of polymer products allows for the recovery of nearly 40% of the energy required for the production of products and processes enabling the use of waste from these products. Despite the low efficiency index, energy recovery from non-recyclable plastic waste should be considered as a positive action. Plastic packaging waste subjected to catalytic cracking can be included in the settlement of the obligation to achieve the required level of recovery if the cracking products are used for energy purposes.
Źródło:
Journal of Ecological Engineering; 2019, 20, 8; 100-106
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Current State, Challenges and Perspectives of Biological Production of Hydrogen in Dark Fermentation Process in Poland
Autorzy:
Kozłowski, Kamil
Lewicki, Andrzej
Malińska, Krystyna
Wei, Qiao
Powiązania:
https://bibliotekanauki.pl/articles/124446.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
renewable energy sources
biohydrogen
dark fermentation
wastes management
biogas plants
Opis:
The increasing demand for electrical energy and environmental concerns associated with conventional means of its generation drive the interest in alternative fuels. Biohydrogen, widely considered as fuel of the future, is one of such alternatives. To date, research results suggest that biological routes are the most promising for hydrogen production, especially dark (hydrogen) fermentation. Hydrogen fermentation can be performed with agricultural and food processing wastes as substrates. In this paper the most important factors influencing dark fermentation are reviewed and analyzed. These are: pH, partial pressure, temperature, and retention time. The biohydrogen generation efficiency is also presented with respect to different substrates. It should be also pointed out that many factors are still unknown; thus, the process requires conducting further research.
Źródło:
Journal of Ecological Engineering; 2019, 20, 2; 146-160
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies