Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "calorimetry" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Analiza termo-optyczna (TOA) jako narzędzie badań zjawisk topnienia
Thermo-optical analysis (TOA) as a tool of melting phenomena investigations
Autorzy:
Galewski, Zbigniew
Korbecka, Izabela
Osiecka-Drewniak, Natalia
Powiązania:
https://bibliotekanauki.pl/articles/171758.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
kalorymetria adiabatyczna
kalorymetria DSC z kompensacją ciepła
kalorymetria DSC z przepływem ciepła
modulacyjna kalorymetria
MDSC
różnicowa analiza termiczna
DTA
ciekłe kryształy
mezogeny
fazy rotacyjne
adiabatic calorimetry
DSC calorimetry with heat compensation
DSC calorimetry with heat flow
modulation calorimetry
differential thermal analysis
liquid crystals
mesogens
rotational phases
Opis:
In the work, after preliminary discussion of the complexity of the phenomenon of melting chemical compounds, two basic research methods are presented: calorimetric methods and thermooptical method. The physical basis of the five main calorimetry techniques is now detailed (adiabatic calorimetry, differential thermal analysis – DTA, differential scanning calorimetry with heat compensation – DSC heat compensated, differential scanning calorimetry with heat flow – DSC heat flux and differential scanning calorimetry with temperature modulation – MDSC) and thermo-optical techniques used in phase transitions investigations. The advantages and disadvantages of these methods are shown in numerous examples and the accuracy attainable by the individual measuring techniques is compared.
Źródło:
Wiadomości Chemiczne; 2019, 73, 3-4; 202-220
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody wyznaczania krytycznego stężenia micelarnego związków powierzchniowo czynnych
Methods for determining critical micellar concentration of surfactants
Autorzy:
Grabowska, Ola
Dywicki, Paweł
Chmurzyński, Lech
Powiązania:
https://bibliotekanauki.pl/articles/171754.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
związki powierzchniowo czynne
krytyczne stężenie micelarne
konduktometria
elektroforeza kapilarna
izotermiczna kalorymetria miareczkowa
metoda luminescencyjna
surface active agents
critical micelle concentration
conductometry
capillary electrophoresis
isothermal titration calorimetry
luminescent method
Opis:
Surface active agents, also known as surfactants, are a group of chemical compounds that are used in various products of the chemical industry. These compounds are components of medicines, detergents, motor oils and many others. The multitude of uses of surfactants makes it important to know their aggregation behaviour in solution. There are many methods used to analyse surfactants behaviour in liquid phase. The choice of a particular technique usually depends on the chemical structure of the surfactant. An example of a method that is used in studies of ionic surfactants is conductometry. This technique allows to study the dependence of specific conductivity on surfactant concentration, enabling determination of critical micellar concentration (CMC). Capillary electrophoresis is another example of the method used to determine the critical micellar concentration. It allows to make measurements in conditions where other methods fail, including conductometric method. Surfactant solutions differ in viscosity, which changes with the appearance of micelles in solution. Measurement of marker compound migration time through surfactant solutions of various concentrations allow to determine critical micellar concentration. Isothermal titration calorimetry (ITC) allows to study the thermal effects associated with the aggregation of surfactants into micelles. Based on the energy changes that occur during titration, the critical micellar concentration of surfactant can be precisely determined. ITC is very sensitive method, so basically it can be used to examine all types of surfactants. In addition, the ITC method allows to determine the thermodynamic parameters of the undergoing micellization process. The use of several measuring methods gives a more complete picture of the phenomena occurring in solutions. It allows to understand aggregation process more accurately. Therefore, CMC measurement are often made with the use of several complementary methods.
Źródło:
Wiadomości Chemiczne; 2020, 74, 5-6; 371-390
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody badań niejednorodności energetycznej powierzchni katalizatorów i adsorbentów
Methods of investigation energetical heterogeneity on the surface of catalysts and adsorbents
Autorzy:
Woszczyński, P.
Powiązania:
https://bibliotekanauki.pl/articles/172199.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
heterogeniczność
niejednorodność energetyczna
równanie Fredholma
adsorpcja
kalorymetria
chromatografia
odwrócona chromatografia gazowa
chromatografia z odwróconym przepływem
programowana termiczna desorpcja
heterogeneity
adsorbent
catalyst
Fredholm equation
adsorption
calorimetry
chromatography
inverse gas chromatography (IGC)
IGC
reverse-flow IGC (RF-IGC )
programmed thermal desorption (TPD)
TPD
Opis:
The knowledge of the properties and a surface structure of catalysts and adsorbents is of great importance in the selection of these materials to the relevant objectives. Interesting structural information can be obtained in many ways, for example: with the use of spectroscopic or microscopic techniques or in direct examination of the adsorption isotherms. This article focuses on these last-mentioned methods, which can be a source of information on energy heterogeneity of the catalyst or adsorbent surface. Heterogeneity is usually determined by measuring adsorption isotherms of a selected adsorbate on the examined adsorbent, which is dependent of adsorbate coverage on the adsorbent relative to the equilibrium pressure under isothermal conditions. Among the many mathematical models describing this relationship particularly interesting is the adsorption isotherm model described by generalized integral Fredholm equation. The solution of this equation is density function with the assumed local isotherm model. There are different ways to solve the Fredholm equation, depending on measurement methods of obtained adsorption isotherms. For example, an application of static techniques (gravimetric or volumetric) needs to use advanced, sophisticated numerical methods for directly solving integral equations, other techniques (e.g. such as calorimetric or chromatographic) provide specific values that simplify these calculations. The resulting energy density function allows to observe active centers as peaks or inflections of the curve on the energy spectrum graph.
Źródło:
Wiadomości Chemiczne; 2013, 67, 7-8; 635-664
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies