Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę ""click” chemistry" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Zastosowania „click chemistry” w modyfikacjach nukleozydów i oligonukleotydów
Applications of click chemistry in modification of nucleosides and oligonucleotides
Autorzy:
Gładysz, M.
Milecki, J.
Powiązania:
https://bibliotekanauki.pl/articles/171589.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
click chemistry
CuAAC
modyfikacje nukleozydów
oligonukleotydy
DNA
kwas deoksyrybonukleinowy
RNA
kwas rybonukleinowy
Click Chemistry
nucleosides modifications
oligonucleotides
deoxyribonucleic acid
ribonucleic acid
Opis:
Since the year 2001 new ideology of clean and simple synthesis in organic chemistry has been established. The outstanding scientists Meldal and Sharpless presented their concepts of Click Chemistry. Among the reactions chosen for this concept the reaction of Copper(I) Catalyzed Alkyne-Azide Cycloaddition (CuAAC) became the most popular one. It is the basis of syntheses employed for building blocks synthesis in medicinal chemistry and material science. Libraries of potentially pharmacologically active anticancer and antivirus compounds possessing neutral triazol linkage could be easily obtained. Remarkable efficiency of CuAAC reaction influenced on DNA- and RNAbased synthesis of novel oligonucleotides derivatives. Many of nucleic acid molecular modifications found applications in enzymatic transformation, nucleic acid hybridization, molecular tagging and gene silencing. The CuAAC reaction allows for introducing modifications into practically every region of nucleoside/nucleotide/ oligonucleotide. This includes versatile modifications of the base moiety both aiming at the base pairing ability or specific labeling of the nucleoside unit. Different conjugates (bio-, fluorescent-, affinity- or spin labels) are being attached to the base part of the nucleic acid taking advantage of the presence of azide or alkyne substituents, which can be installed without great difficulty. Labeling at the sugar part of the nucleoside can be realized at the position 2’, 3’ or 5’, the latter two giving rise to the end-labeled oligonucleotides and the 2’ position serving as the attachment point for labeling inside the oligonucleotide chain. These kind of nucleic acid modifications are very promising. Versatility of CuAAC reactions is demonstrated by numerous examples of introducing modifications into practically every reactive site of the nucleotide/oligonucleotide molecule. The review systematically presents application of the “click” technique for modification of nitrogenous base, sugar or pseudosugar moiety or phosphorus center. Possibility of creating new kind of chain linkage, devoid of negative charge and nuclease resistant is also shown. This allows to design a new class of nucleic acid analogues, similar in its DNA-mimicking properties to PNA’s.
Źródło:
Wiadomości Chemiczne; 2014, 68, 7-8; 617-643
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie chemii "klik" do syntezy biokoniugatów salinomycyny
Application of the click chemistry for the synthesis of salinomycin bioconjugates
Autorzy:
Sulik, Michał
Antoszczak, Michał
Huczyński, Adam
Powiązania:
https://bibliotekanauki.pl/articles/2200436.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
salinomycyna
jonofory
biokoniugacja
chemia click
aktywność przeciwnowotworowa
chemia klik
salinomycin
ionophores
bioconjugation
click chemistry
anticancer activity
Opis:
Bioconjugation is a well-known method of designing new drug candidates for many different diseases, including cancer. The idea of the process is to join two or more bioactive molecules by means of a covalent bond. Thus, obtained hybrids often exhibit higher efficiency compared to that of the starting compounds. Recently, the use of click chemistry, especially Huisgen 1,3-dipolar cycloaddition, has attracted much attention for the synthesis of bioconjugates of natural compounds. The great advantage of this reaction is its high yield and enzymatic stability of the 1,2,3-triazole ring. Mild conditions of this reaction guarantee that it can be used to modify compounds with low stability, such as salinomycin – a representative of ionophore antibiotics. Salinomycin is a naturally occurring lipophilic compound isolated from Streptomyces albus. It is capable of forming complexes with metal cations and transport them across the lipid membranes. This process disturbs the intercellular Na+ /K+ concentration gradient and leads to apoptosis (programmed cell death). Salinomycin exhibits high anticancer activity, including efficiency against multidrug-resistant cancer cells and cancer stem cells of different origin. Chemical modification of the salinomycin skeleton to increase its biological activity is a very interesting research direction. Our review article is focused on the application of click chemistry for the synthesis of salinomycin bioconjugates with many different biologically active compounds (Cinchona alkaloids, nucleosides, triphenylphosphonium cation, betulinic acid and other ionophore antibiotics). Some of the obtained hybrids exhibit higher efficiency compared to that of the starting compounds, e.g., increased anticancer activity, the ability to overcome multi-drug resistance, or improved ionophoretic properties. These results are a good starting point for further research on the use of click chemistry in the synthesis of highly functional hybrids of natural compounds.
Źródło:
Wiadomości Chemiczne; 2022, 76, 11-12; 883--907
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie reakcji 1,3-dipolarnej cykloaddycji Huisgena do modyfikacji nukleozydów i ligonukleotydów
An application of the Huisgen 1,3-dipolar cycloaddition to modify nukleosides and oligonucleotides
Autorzy:
Radzikowska, E.
Powiązania:
https://bibliotekanauki.pl/articles/171872.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
1,3-dipolarna cykloaddycja
analogi nukleozydów
chemia click
synteza modyfikowanych oligonukleotydów
1,2,3-triazole
biokoniugaty
1,3-dipolar cycloaddition
analogues of nucleosides
click chemistry
synthesis of modified oligonucleotide
bioconjugates
Opis:
The 1,3-dipolar cycloaddition reaction between azides and terminal alkynes, known as the Huisgen reaction, constitutes a powerful tool for the synthesis of versatile molecules containing carbon – heteroatom bond. The use of a copper(I) salt in this reaction allowed Sharpless to develop the concept of „click chemistry” [1]. This strategy is based on reactions between small units characterized by mild reaction conditions, versatility, high yields and stereospecificity. The chemistry of nucleic acids and nucleoside analogues is undergoing rapid developments and numerous compounds from these classes of compounds are used in medicinal treatment. Analogues of nucleoside constitute a class of drugs that possesses either anticancer or/and antiviral activity (against HIV, HSV, VZV or HCV viruses) [3]. Many modified oligonucleotides show biological activity. As potential drugs oligonucleotides are employed in antisense, antigen and aptamer strategies. An antisense therapeutic agent acts on the pathogenic mRNA causing inactivation of the target whereas an antigen agent acts on DNA and aptamer on unwanted protein. It is not surprising that number of research groups are trying to join the concept of click chemistry with nucleic acids chemistry. In this way, it is possible to obtain new molecules like base- or sugar-modified nucleosides, nucleosides, bioconjugates and olignucleotides. The copper-catalyzed 1,3-dipolar cycloaddition CuAAC allows to functionalize DNA, for example by labelling it through attaching small molecules to DNA. Two general strategies have been developed for this purpose: presynthetic and postsynthetic labelling. In the presynthetic method nucleotide monomers are labelled before DNA synthesis and purification. In the postsynthetic strategy DNA containing small reactive groups is synthesized first and then it is conjugated with the desired molecules. CuAAC is also a convenient method for the synthesis of modified oligonucleotides in which phosphodiester linkage is replaced by 1,2,3- -triazole or for a solid phase synthesis. Such molecules appear to be useful in medicine, molecular diagnostic (e.g. fluorescent dyes) or mechanistic molecular model in the future.
Źródło:
Wiadomości Chemiczne; 2011, 65, 3-4; 207-234
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies