Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "shoot tissue" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Signals flowing from mature tissues to shoot apical meristem affect phyllotaxis in coniferous shoot
Autorzy:
Banasiak, A
Zagorska-Marek, B.
Powiązania:
https://bibliotekanauki.pl/articles/57096.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Botaniczne
Tematy:
mature tissue
shoot
apical meristem
phyllotaxis
coniferous plant
auxin
vascular system
leaf
primordium
Opis:
Axial homodromy in growing shoots of perennial plants with spiral phyllotaxis is the case when the chirality of phyllotactic pattern does not change in consecutive growth increments of the same axis. In conifers such as Picea or Abies this rule is strictly observed, except for the rare cases of discontinuous phyllotactic transitions. In Torreya, however, the chirality changes, at random, every year. The pattern of primordia packing, executed by vegetative shoot apical meristem (SAM), depends in Torreya on their identity. The primordia of bud scales are initiated in the decussate and those of needles in bijugate spiral pattern. The decussate, achiral i.e. neutral pattern always precedes the formation of new spiral pattern and thus facilitates random selection of its chiral configuration. Periodic change in organ identity cannot itself be responsible for the special behavior of Torreya, because in other conifers it also exists. There is, however, one important difference: in Torreya, when the initiation of bud scales begins at SAM, the distance between differentiated protoxylem and the initiation site gradually increases, while in other conifers it remains constant and small. In Torreya, at this phase of development, the rate of xylem differentiation and the rate of organogenesis become uncoupled. Closer anatomical examination shows that the decussate pattern in a bud scale zone develops slowly suggesting gradual decrease of the putative signal flowing acropetally from differentiated protoxylem, responsible for positioning of primordia. We hypothesize that in the absence of this signal SAM starts acting autonomously, distributing primordia according to their identity only. A constant presence of the signal in other conifers assures the continuation of the same phyllotactic pattern throughout the period of bud scale formation, despite the change in organ identity.
Źródło:
Acta Societatis Botanicorum Poloniae; 2006, 75, 2; 113-121
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Propagation of goldenrod (Solidago canadensis L.) from leaf and nodal explants
Autorzy:
Li, J.
Kang, Y.
Qiang, S.
Peng, G.
Powiązania:
https://bibliotekanauki.pl/articles/56457.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Botaniczne
Tematy:
propagation
goldenrod
Solidago canadensis
leaf
nodal explant
callus formation
micropropagation
adventitious shoot
tissue culture
Opis:
Goldenrod (Solidago canadensis L.) is an invasive plant species in many countries except North America but a cut-flower species worldwide. There is a need to generate and propagate goldenrod clones efficiently for research and commercial purposes. A callus induction and plantlet regeneration system was developed by studying the influence of explant type and different concentrations of plant growth regulators. The highest callus production from leaf segments was obtained on Murashige and Skoog's medium (MS medium) supplemented with 1.0 mg/L naphthalene acetic acid (NAA) and 1.0 mg/L 6-benzylaminopurine (BA). Adventitious shoots could be regenerated directly from leaf explants without an intermediate callus phase with the highest shoot induction percentage of 87.2%. The largest number of adventitious shoots per leaf explant (3.2) was obtained on MS medium supplemented with 0.4 mg/L NAA and 2.0 mg/L BA. MS medium supplemented with 0.1 mg/L NAA and 1.0 mg/L BA was the best medium for axillary shoot regeneration from nodal segments. The highest root number and longest roots occurred on half-strength MS without the addition of any growth regulator. Rooted plantlets were then transferred to a soil-based growth medium, placed in a greenhouse, and acclimatized with 100% success. All surviving plants grew normally without showing any morphological variation when compared to those grow from seed. This regeneration protocol may be used to produce certain biotypes of goldenrod suitable for genetic transformation, rapid propagation of goldenrod for commercial purposes or for screening fungi and toxins as potential biocontrol agents against this weed.
Źródło:
Acta Societatis Botanicorum Poloniae; 2012, 81, 1
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Phyllosphere mycobiota on garden pond plants
Fyllosferowe mykobiota roślin oczek wodnych
Autorzy:
Kowalik, M.
Powiązania:
https://bibliotekanauki.pl/articles/67060.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Botaniczne
Tematy:
Phyllosphere
mycobiota
garden pond
plant
aquatic plant
fungi
plant disease
leaf
shoot
tissue
mycobiota list
isolation
Opis:
Investigations were conducted on calamus, common cattail, soft rush, yellow iris and white water lily plants in twenty ponds in Malopolska and Podkarpacie Regions. Mycobiota existing in the phyllosphere caused discolouring and necroses of leaves and shoots. 88 species of mycobiota were identified and isolated from the diseased tissues. Dominant were Alternaria alternata, Epicoccum nigrum and Isaria farinosa. Fungi of genera: Aspergillus, Botrytis, Chaetomium, Cladosporium, Fusarium, Ilyonectria, Mortierella, Mucor, Penicillium, Phialophora, Phoma, Pleustomophora, Sordaria, Trichoderma and Umbelopsis were also numerous. The monophagous and the polyphagous were identified.
W badaniach terenowych i laboratoryjnych przeprowadzonych w latach 2006, 2008-2010, w dwudziestu oczkach wodnych usytuowanych na terenie Małopolski i Podkarpacia określono stan zdrowotny: tataraku zwyczajnego Acorus calamus L., pałki szerokolistnej Typha latifolia L., situ rozpierzchłego Juncus effusus L., irysa żółtego Iris pseudoacorus L. i grzybienia białego Nymphaea alba L. Mykobiota bytujące w fyllosferze roślin powodowały różnorakie przebarwienia i nekrozy. Z porażonych tkanek roślin wyodrębniono 2675 kolonii mykobiota, należących do 88 gatunków. W zbiorowisku wyodrębnionych mykobiota dominowały: Alternaria alternata, Epicoccum nigrum i Isaria farinosa. Mniej licznie izolowano grzyby z rodzajów: Aspergillus, Botrytis, Chaetomium, Cladosporium, Fusarium, Ilyonectria, Mortierella, Mucor, Penicillium, Phialophora, Phoma, Pleustomophora, Sordaria, Trichoderma i Umbelopsis. Fyllosferowe mykobiota roślin oczek wodnych powodując nekrozy przyczyniały się do destrukcji tkanek, co skutkowało obniżeniem walorów dekoracyjnych oczek wodnych.
Źródło:
Acta Mycologica; 2012, 47, 1
0001-625X
2353-074X
Pojawia się w:
Acta Mycologica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies