Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "glutathione s-transferase" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Glutathione conjugation in male reproductive system: Studies on glutathione-S-transferase of bull and boar epididymis.
Autorzy:
Ciszewska-Piłczyńska, Agata
Barańczyk-Kuźma, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1044436.pdf
Data publikacji:
2000
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
bull
glutathione-S-transferase
boar
glutathione conjugation
epididymis
Opis:
Male reproductive organs are extremely sensitive to the negative influence of toxic environmental factors as well as drugs, and until now not many attempts have been made at studying the detoxication enzymes and the relationship between the activity of those enzymes and spermatozoa fertility. In the present work we studied cytosolic glutathione-S-transferases (GST, EC 2.5.1.18) from different parts (head, corpus and tail) of bull and boar epididymis. We isolated two molecular forms of GST from each part of epididymis, characterized their biochemical properties and examined the mechanism of the catalyzed reaction. On the basis of their substrate specificity and isoelectric point, the isoforms were found to belong to the near neutral GST class mi. All examined GST forms exhibited higher affinity towards GSH than towards 1-chloro-2,4-dinitrobenzene (CDNB) and bull epididymis GST forms showed biphasic Lineweaver-Burk double reciprocal curves in the presence of GSH as a variable substrate. Boar epididymis anionic GST had the -SH groups both in the GSH and the CDNB binding place, whereas the cationic GST form - arginine residues in the CDNB binding place. Bull epididymis GST forms contained neither thiol nor arginine residues essential for catalytic activity.
Źródło:
Acta Biochimica Polonica; 2000, 47, 1; 223-231
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Glutathione S-transferase pi as a target for tricyclic antidepressants in human brain.
Autorzy:
Barańczyk-Kuźma, Anna
Kuźma, Magdalena
Gutowicz, Marzena
Kaźmierczak, Beata
Sawicki, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/1043346.pdf
Data publikacji:
2004
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
tricyclic antidepressants
human brain
glutathione S-transferase pi
Opis:
GST pi, the main glutathione S-transferase isoform present in the human brain, was isolated from various regions of the brain and the in vitro effect of tricyclic antidepressants on its activity was studied. The results indicated that amitripyline and doxepin - derivatives of dibenzcycloheptadiene, as well as imipramine and clomipramine - derivatives of dibenzazepine, inhibit the activity of GST pi from frontal and parietal cortex, hippocampus and brain stem. All these tricyclics are noncompetitive inhibitors of the enzyme with respect to reduced glutathione and noncompetitive (amitripyline, doxepin) or uncompetitive (imipramine, clomipramine) with respect to the electrophilic substrate. Their inhibitory effect is reversible and it depends on the chemical structure of the tricyclic antidepressants rather than on the brain localization of the enzyme. We conclude that the interaction between GST pi and the drugs may reduce their availability in the brain and thus affect their therapeutic activity. On the other hand, tricyclic antidepressants may decrease the efficiency of the enzymatic barrier formed by GST and increase the exposure of brain to toxic electrophiles. Reactive electrophiles not inactivated by GST may contribute in adverse effects caused by these drugs.
Źródło:
Acta Biochimica Polonica; 2004, 51, 1; 207-212
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Changes in GSH-antioxidant system induced by daunorubicin in human normal and diabetic fibroblasts.
Autorzy:
Zatorska, Agnieszka
Maszewski, Janusz
Jóźwiak, Zofia
Powiązania:
https://bibliotekanauki.pl/articles/1043460.pdf
Data publikacji:
2003
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
glutathione S-transferase
glutathione reductase
glutathione peroxidase
daunorubicin
apoptosis
glutathione
oxidative stress
Opis:
We investigated the effect of daunorubicin on glutathione content and activity of GSH-related enzymes in cultured normal and diabetic human fibroblasts. Cells were incubated with 4 μM daunorubicin (DNR) for 2 h followed by culture in drug-free medium for up to 72 h. Treatment of diabetic cells with the drug caused a time-dependent depletion of intracellular GSH and a decrease of the GSH to total glutathione ratio. GSH depletion was accompanied by apoptotic changes in morphology of the nucleus. Analysis of GSH-related enzymes showed a significant increase of the activities of Se-dependent and Se-independent peroxidases and glutathione S-transferase. In contrast, glutathione reductase activity was reduced by 50%. Significant differences between normal and diabetic cells exposed to DNR were observed in the level of GST and Se-dependent glutathione peroxidase activities. These findings indicated that daunorubicin efficiently affects the GSH antioxidant defense system both in normal and diabetic fibroblasts leading to disturbances in glutathione content as well as in the activity of GSH-related enzymes.
Źródło:
Acta Biochimica Polonica; 2003, 50, 3; 825-835
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Glutathione and GSH-dependent enzymes in patients with liver cirrhosis and hepatocellular carcinoma
Autorzy:
Czeczot, Hanna
Ścibior, Dorota
Skrzycki, Michał
Podsiad, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/1041298.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
malondialdehyde
glutathione S-transferase
glutathione reductase
liver cirrhosis
glutathione peroxidase
glutathione
hepatocellular carcinoma
Opis:
We investigated glutathione level, activities of selenium independent GSH peroxidase, selenium dependent GSH peroxidase, GSH S-transferase, GSH reductase and the rate of lipid peroxidation expressed as the level of malondialdehyde in liver tissues obtained from patients diagnosed with cirrhosis or hepatocellular carcinoma. GSH level was found to be lower in malignant tissues compared to adjacent normal tissues and it was higher in cancer than in cirrhotic tissue. Non-Se-GSH-Px activity was lower in cancer tissue compared with adjacent normal liver or cirrhotic tissue, while Se-GSH-Px activity in cancer was found to be similar to its activity in cirrhotic tissue and lower compared to control tissue. An increase in GST activity was observed in cirrhotic tissue compared with cancer tissue, whereas the GST activity in cancer was lower than in adjacent normal tissue. The activity of GSH-R was similar in cirrhotic and cancer tissues, but higher in cancer tissue compared to control liver tissue. An increased level of MDA was found in cancer tissue in comparison with control tissue, besides its level was higher in cancer tissue than in cirrhotic tissue. Our results show that the antioxidant system of cirrhosis and hepatocellular carcinoma is severely impaired. This is associated with changes of glutathione level and activities of GSH-dependent enzymes in liver tissue. GSH and enzymes cooperating with it are important factors in the process of liver diseases development.
Źródło:
Acta Biochimica Polonica; 2006, 53, 1; 237-242
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Filarial glutathione S-transferase: its induction by xenobiotics and potential as drug target
Autorzy:
Gupta, Sarika
Rathaur, Sushma
Powiązania:
https://bibliotekanauki.pl/articles/1041437.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
actinomycin D
lymphatic filariasis
diethylcarbamazine
glutathione-S-transferase
Setaria cervi
Opis:
Glutathione-S-transferase (GST) a Phase-II drug detoxification enzyme, was detected in Setaria cervi, a bovine filarial parasite. In vitro effect of diethylcarbamazine, butylated hydroxyanisole and phenobarbitone on the GST of adult female S. cervi was assayed by the addition of these compounds in the maintenance medium. The specific activity of GST towards 1-chloro-2,4-dinitrobenzene was increased progressively 1.2-1.97, 1.3-2.4 and 1.2-2.7 times at 10-100 µM of diethylcarbamazine, butylated hydroxyanisole and phenobarbitone, respectively, after 5 h at 37°C. Substrate specificity studies showed a higher increase in specific activity with ethacrynic acid and no change with cumene hydroperoxide. Although the intensity of GST activity band was more in extract from diethylcarbamazine or butylated hydroxyanisole treated worms extract, an extra band of activity appeared in those worm extracts compared to control worm extract. SDS/PAGE showed increased thickness of the band corresponding to purified GST in extracts from diethylcarbamazine/butylated hydroxyanisole/phenobarbitone treated worms. Purification and quantification of GST from diethylcarbamazine and butylated hydroxyanisole treated worms indicated an increase in enzyme specific activity. The increase in GST protein by these agents was blocked by prior treatment with actinomycin D, indicative of a transcription dependent response. The role of this enzyme in motility and viability of microfilariae and adult female was tested in vitro using a range of known GST inhibitors. Of those tested, ethacrynic acid, ellagic acid, 1-chloro-2,4-dinitrobenzene, cibacron blue and butylated hydroxyanisole reduced the viability and motility of microfilariae and adult female worms at micromolar concentrations. These results suggest that S. cervi GST is inducible in response to the antifilarial drug diethylcarbamazine and may play an important role in parasite's survival, thus could be a potential drug target.
Źródło:
Acta Biochimica Polonica; 2005, 52, 2; 493-500
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tocopherol esters inhibit human glutathione S-transferase omega
Autorzy:
Sampayo-Reyes, Adriana
Zakharyan, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1041213.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
glutathione S-transferase
human
hGSTO1-1
MMA(V) reductase
Vitamin E
Opis:
Human glutathione S-transferase omega 1-1 (hGSTO1-1) is a newly identified member of the glutathione S-transferase (GST) family of genes, which also contains alpha, mu, pi, sigma, theta, and zeta members. hGSTO1-1 catalyzes the reduction of arsenate, monomethylarsenate (MMA(V)), and dimethylarsenate (DMA(V)) and exhibits thioltransferase and dehydroascorbate reductase activities. Recent evidence has show that cytokine release inhibitory drugs, which specifically inhibit interleukin-1b (IL-1b), directly target hGSTO1-1. We found that (+)-α-tocopherol phosphate and (+)-α-tocopherol succinate inhibit hGSTO1-1 in a concentration-dependent manner with IC50 values of 2 µM and 4 µM, respectively. A Lineweaver-Burk plot demonstrated the uncompetitive nature of this inhibition. The molecular mechanism behind the inhibition of hGSTO1-1 by α-tocopherol esters (vitamin E) is important for understanding neurodegenerative diseases, which are also influenced by vitamin E.
Źródło:
Acta Biochimica Polonica; 2006, 53, 3; 547-552
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lipid peroxidation and cell cycle signaling : 4-hydroxynonenal, a key molecule in stress mediated signaling.
Autorzy:
Yang, Yusong
Sharma, Rajendra
Sharma, Abha
Awasthi, Sanjay
Awasthi, Yogesh
Powiązania:
https://bibliotekanauki.pl/articles/1043608.pdf
Data publikacji:
2003
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
glutathione S-transferase
RLIP76
4-hydroxynonenal
RalBP1
cell cycle signaling
apoptosis
Opis:
Role of lipid peroxidation products, particularly 4-hydroxynonenal (4-HNE) in cell cycle signaling is becoming increasingly clear. In this article, recent studies suggesting an important role of 4-HNE in stress mediated signaling for apoptosis are critically evaluated. Evidence demonstrating the modulation of UV, oxidative stress, and chemical stress mediated apoptosis by blocking lipid peroxidation by the α-class glutathione S-transferases (GSTs) is presented which suggest an important role of these enzymes in protection against oxidative stress and a role of lipid peroxidation products in stress mediated signaling. Overexpression of 4-HNE metabolizing GSTs (mGSTA4-4, hGSTA4-4, or hGST5.8) protects cells against 4-HNE, oxidative stress (H2O2 or xanthine/xanthine oxidase), and UV-A mediated apoptosis by blocking JNK and caspase activation suggesting a role of 4-HNE in the mechanisms of apoptosis caused by these stress factors. The intracellular concentration of 4-HNE appears to be crucial for the nature of cell cycle signaling and may be a determinant for the signaling for differentiation, proliferation, transformation, or apoptosis. The intracellular concentrations of 4-HNE are regulated through a coordinated action of GSTs (GSTA4-4 and hGST5.8) which conjugate 4-HNE to GSH to form the conjugate (GS-HNE) and the transporter 76 kDa Ral-binding GTPase activating protein (RLIP76), which catalyze ATP-dependent transport of GS-HNE. A mild stress caused by heat, UV-A, or H2O2 with no apparent effect on the cells in culture causes a rapid, transient induction of hGST5.8 and RLIP76. These stress preconditioned cells acquire ability to metabolize and exclude 4-HNE at an accelerated pace and acquire relative resistance to apoptosis by UV and oxidative stress as compared to unconditioned control cells. This resistance of stress preconditioned cells can be abrogated by coating the cells with anti-RLIP76 antibodies which block the transport of GS-HNE. These studies and previous reports discussed in this article strongly suggest a key role of 4-HNE in stress mediated signaling.
Źródło:
Acta Biochimica Polonica; 2003, 50, 2; 319-336
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Carotenoid-binding proteins; accessories to carotenoid function
Autorzy:
Pilbrow, Jodi
Garama, Daniel
Carne, Alan
Powiązania:
https://bibliotekanauki.pl/articles/1039812.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
Evechinus chloroticus
echinenone-binding protein.
glutathione-S-transferase P1
orange carotenoid protein
carotenoprotein
crustacyanin
Opis:
Understanding of the widespread biological importance of carotenoids is increasing. Accompanying this is the developing recognition that the interaction of carotenoids with other molecules, such as proteins, is also essential. Here the significance of carotenoid-protein interactions with respect to biological function is reviewed for three well characterised carotenoprotein complexes; crustacyanin, the orange carotenoid protein and glutathione-S-transferase P1. In addition a preliminary report is made on the recent partial purification of an echinenone-binding protein extracted from a New Zealand sea urchin, Evechinus chloroticus.
Źródło:
Acta Biochimica Polonica; 2012, 59, 1; 163-165
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differences in glutathione S-transferase pi expression in transgenic mice with symptoms of neurodegeneration
Autorzy:
Kaźmierczak, Beata
Kuźma-Kozakiewicz, Magdalena
Usarek, Ewa
Barańczyk-Kuźma, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1039866.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
motor neuron disease
Dync1h1 mutation
SOD1G93A mutation
central nervous system
transgenic mice
glutathione S-transferase pi
Opis:
Glutathione S-transferase pi (GST pi) is an enzyme involved in cell protection against toxic electrophiles and products of oxidative stress. GST pi expression was studied in transgenic mice hybrids (B6-C3H) with symptoms of neurodegeneration harboring SOD1G93A (SOD1/+), Dync1h1 (Cra1/+) and double (Cra1/SOD1) mutations, at presymptomatic and symptomatic stages (age 70, 140, 365 days) using RT-PCR and Western blotting. The main changes in GST pi expression were observed in mice with the SODG93A mutation. In SOD1/+ and Cra1/SOD1 transgenics, with the exception of cerebellum, the changes in GST pi-mRNA accompanied those in GST pi protein. In brain cortex of both groups the expression was unchanged at the presymptomatic (age 70 days) but was lower at the symptomatic stage (age 140 days) and at both stages in hippocampus and spinal cord of SOD1/+ but not of Cra1/SOD1 mice compared to age-matched wild-type controls. In cerebellum of the presymptomatic and the symptomatic SOD1/+ mice and presymptomatic Cra1/SOD1 mice, the GST pi-mRNA was drastically elevated but the protein level remained unchanged. In Cra1/+ transgenics there were no changes in GST pi expression in any CNS region both on the mRNA and on the protein level. It can be concluded that the SOD1G93A but not the Dync1h1 mutation significantly decreases detoxification efficiency of GST pi in CNS, however the Dync1h1 mutation reduces the effects caused by the SOD1G93A mutation. Despite similarities in neurological symptoms, the differences in GST pi expression between SOD1/+ and Cra1/+ transgenics indicate a distinct pathogenic entity of these two conditions.
Źródło:
Acta Biochimica Polonica; 2011, 58, 4; 621-626
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies