Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "exocyclic DNA adducts" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Sequence-specific p53 gene damage by chloroacetaldehyde and its repair kinetics in Escherichia coli
Autorzy:
Kowalczyk, Paweł
Cieśla, Jarosław
Saparbaev, Murat
Laval, Jacques
Tudek, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/1041247.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
chloroacetaldehyde
p53
replication
exocyclic DNA adducts
vinyl chloride
LM-PCR
DNA repair
sequence-specific DNA damage
Opis:
Oxidative stress and certain environmental carcinogens, e.g. vinyl chloride and its metabolite chloroacetaldehyde (CAA), introduce promutagenic exocyclic adducts into DNA, among them 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and N2,3-ethenoguanine (εG). We studied sequence-specific interaction of the vinyl-chloride metabolite CAA with human p53 gene exons 5-8, using DNA Polymerase Fingerprint Analysis (DPFA), and identified sites of the highest sensitivity. CAA-induced DNA damage was more extensive in p53 regions which revealed secondary structure perturbations, and were localized in regions of mutation hot-spots. These perturbations inhibited DNA synthesis on undamaged template. We also studied the repair kinetics of CAA-induced DNA lesions in E. coli at nucleotide resolution level. A plasmid bearing full length cDNA of human p53 gene was modified in vitro with 360 mM CAA and transformed into E. coli DH5α strain, in which the adaptive response system had been induced by MMS treatment before the cells were made competent. Following transformation, plasmids were re-isolated from transformed cultures 35, 40, 50 min and 1-24 h after transformation, and further subjected to LM-PCR, using ANPG, MUG and Fpg glycosylases to identify the sites of DNA damage. In adaptive response-induced E. coli cells the majority of DNA lesions recognized by ANPG glycosylase were removed from plasmid DNA within 35 min, while MUG glycosylase excised base modifications only within 50 min, both in a sequence-dependent manner. In non-adapted cells resolution of plasmid topological forms was perturbed, suggesting inhibition of one or more bacterial topoisomerases by unrepaired ε-adducts. We also observed delayed consequences of DNA modification with CAA, manifesting as secondary DNA breaks, which appeared 3 h after transformation of damaged DNA into E. coli, and were repaired after 24 h.
Źródło:
Acta Biochimica Polonica; 2006, 53, 2; 337-347
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mismatch dependent uracil/thymine-DNA glycosylases excise exocyclic hydroxyethano and hydroxypropano cytosine adducts.
Autorzy:
Borys-Brzywczy, Ewa
Arczewska, Katarzyna
Saparbaev, Murat
Hardeland, Ulrike
Schär, Primo
Kuśmierek, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/1041473.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
base excision repair
E. coli mismatch uracil-DNA glycosylase
exocyclic cytosine adducts
human thymine-DNA glycosylase
S. pombe Thp1p glycosylase
Opis:
Exocyclic adducts of DNA bases, such as etheno- and hydroxyalkano- ones, are generated by a variety of bifunctional agents, including endogenously formed products of lipid peroxidation. In this work we selectively modified cytosines in the 5'-d(TTT TTT CTT TTT CTT TTT CTT TTT T)-3' oligonucleotide using: chloroacetaldehyde to obtain 3,N4-α-hydroxyethano- (HEC) and 3,N4-etheno- (εC), acrolein to obtain 3,N4-α-hydroxypropano- (HPC) and crotonaldehyde to obtain 3,N4-α-hydroxy-γ-methylpropano- (mHPC) adducts of cytosine. The studied adducts are alkali-labile which results in oligonucleotide strain breaks at the sites of modification upon strong base treatment. The oligonucleotides carrying adducted cytosines were studied as substrates of Escherichia coli Mug, human TDG and fission yeast Thp1p glycosylases. All the adducts studied are excised by bacterial Mug although with various efficiency: εC >HEC >HPC >mHPC. The yeast enzyme excises efficiently εC ł HEC >HPC, whereas the human enzyme excises only εC. The pH-dependence curves of excision of εC, HEC and HPC by Mug are bell shaped and the most efficient excision of adducts occurs within the pH range of 8.6-9.6. The observed increase of excision of HEC and HPC above pH 7.2 can be explained by deprotonation of these adducts, which are high pKa compounds and exist in a protonated form at neutrality. On the other hand, since εC is in a neutral form in the pH range studied, we postulate an involvement of an additional catalytic factor. We hypothesize that the enzyme structure undergoes a pH-induced rearrangement allowing the participation of Lys68 of Mug in catalysis via a hydrogen bond interaction of its ε-amino group with N4 of the cytosine exocyclic adducts.
Źródło:
Acta Biochimica Polonica; 2005, 52, 1; 149-165
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies