Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Milewski, Marek." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops and other RNA-mediated mechanisms controlling microRNA processing
Autorzy:
Koralewska, Natalia
Hoffmann, Weronika
Pokornowska, Maria
Milewski, Marek
Lipinska, Andrea
Bienkowska-Szewczyk, Krystyna
Figlerowicz, Marek
Kurzynska-Kokorniak, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1038739.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
ribonuclease Dicer
miRNA processing
regulatory RNAs
regulation of Dicer activity
regulatory feedback-loops
Opis:
Ribonuclease Dicer plays a pivotal role in RNA interference pathways by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. While details of Dicer regulation by a variety of proteins are being elucidated, less is known about non-protein factors, e.g. RNA molecules, that may influence this enzyme's activity. Therefore, we decided to investigate the question of whether the RNA molecules can function not only as Dicer substrates but also as its regulators. Our previous in vitro studies indicated that the activity of human Dicer can be influenced by short RNA molecules that either bind to Dicer or interact with its substrates, or both. Those studies were carried out with commercial Dicer preparations. Nevertheless, such preparations are usually not homogeneous enough to carry out more detailed RNA-binding studies. Therefore, we have established our own system for the production of human Dicer in insect cells. In this manuscript, we characterize the RNA-binding and RNA-cleavage properties of the obtained preparation. We demonstrate that Dicer can efficiently bind single-stranded RNAs that are longer than ~20-nucleotides. Consequently, we revisit possible scenarios of Dicer regulation by single-stranded RNA species ranging from ~10- to ~60-nucleotides, in the context of their binding to this enzyme. Finally, we show that siRNA/miRNA-sized RNAs may affect miRNA production either by binding to Dicer or by participating in regulatory feedback-loops. Altogether, our studies suggest a broad regulatory role of short RNAs in Dicer functioning.
Źródło:
Acta Biochimica Polonica; 2016, 63, 4; 773-783
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design.
Autorzy:
Wojciechowski, Marek
Milewski, Sławomir
Mazerski, Jan
Borowski, Edward
Powiązania:
https://bibliotekanauki.pl/articles/1041368.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
drug design
glucosamine-6-phosphate synthase
fungal infections
glutamine amidotransferases
molecular modelling
Opis:
Fungal infections are a growing problem in contemporary medicine, yet only a few antifungal agents are used in clinical practice. In our laboratory we proposed the enzyme L-glutamine : D-fructose-6-phosphate amidotransferase (EC 2.6.1.16) as a new target for antifungals. The structure of this enzyme consists of two domains, N-terminal and C-terminal ones, catalysing glutamine hydrolysis and sugar-phosphate isomerisation, respectively. In our laboratory a series of potent selective inhibitors of GlcN-6-P synthase have been designed and synthesised. One group of these compounds, including the most studied N3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid (FMDP), behave like glutamine analogs acting as active-site-directed inactivators, blocking the N-terminal, glutamine-binding domain of the enzyme. The second group of GlcN-6-P synthase inhibitors mimic the transition state of the reaction taking place in the C-terminal sugar isomerising domain. Surprisingly, in spite of the fact that glutamine is the source of nitrogen for a number of enzymes it turned out that the glutamine analogue FMDP and its derivatives are selective against GlcN-6-P synthase and they do not block other enzymes, even belonging to the same family of glutamine amidotransferases. Our molecular modelling studies of this phenomenon revealed that even within the family of related enzymes substantial differences may exist in the geometry of the active site. In the case of the glutamine amidotransferase family the glutamine binding site of GlcN-6-P synthase fits a different region of the glutamine conformational space than other amidotransferases. Detailed analysis of the interaction pattern for the best known, so far, inhibitor of the sugar isomerising domain, namely 2-amino-2-deoxy-d-glucitol-6-phosphate (ADGP), allowed us to suggest changes in the structure of the inhibitor that should improve the interaction pattern. The novel ligand was designed and synthesised. Biological experiments confirmed our predictions. The new compound named ADMP is a much better inhibitor of glucosamine-6-phosphate synthase than ADGP.
Źródło:
Acta Biochimica Polonica; 2005, 52, 3; 647-653
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies