Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wykorzystanie wody" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Analiza wykorzystania wody przez wiśnię, w różnych warunkach wodnych i nawozowych
Analysis of the use of water by cherry, in different conditions of water and fertilizer
Autorzy:
Jaroszewska, A.
Podsiadlo, C.
Kowalewska, R.
Powiązania:
https://bibliotekanauki.pl/articles/61426.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
drzewa owocowe
nawadnianie
nawozenie mineralne
wisnia
wykorzystanie wody
fotosynteza
transpiracja
przewodnosc szparkowa
wspolczynnik wykorzystania wody
chwilowy wspolczynnik wykorzystania wody
Opis:
Doświadczenie polowe przeprowadzono w latach 2003 i 2005 w Stacji Doświadczalnej Lipnik k/Stargardu Szczecińskiego, na glebie brunatnej kwaśnej. Gleba ta zaliczana jest do IVb klasy bonitacyjnej, kompleksu żytniego dobrego, a pod względem uprawy do gleb lekkich o małej retencji wody użytecznej. Oceniano wykorzystanie wody przez wiśnię odm. 'Łutówka' uprawianą w zróżnicowanych warunkach wodnych i nawozowych. Doświadczenie założono metodą losowanych podbloków w układzie zależnym (ang. split-plot), w siedmiu powtórzeniach. Przeprowadzono je na drzewach w czwartym roku po posadzeniu, wchodzących w trzeci rok owocowania. Między drzewami utrzymywano murawę, a w rzędach drzew - ugór herbicydowy. Czynnikiem I było nawadnianie podkoronowe (minizraszanie): O-kontrola (bez nawadniania); W-obiekty nawadniane, gdy potencjał wodny gleby obniżył się poniżej 0,01 MPa. Do nawadniania zastosowano system podkoronowy, w którym woda rozprowadzana była za pomocą minizraszaczy typu Hadar o zasięgu zraszania r-1m. Czynnikiem II było nawożenie mineralne, 0 NPK - kontrola (bez nawożenia), 2 NPK - 260 kg NPK•ha-1 (80+60+120). Nawozy azotowe stosowano wczesną wiosną, przed ruszeniem wegetacji, natomiast fosforowe i potasowe jesienią zgodnie z zaleceniami agrotechnicznymi. Na podstawie ilorazu intensywności fotosyntezy do transpiracji wyznaczono fotosyntetyczny współczynnik wykorzystania wody (WUE) i chwilowy fotosyntetyczny współczynnik wykorzystania wody (WUEI). Na wzrost aktywności fotosyntetycznej, transpiracji oraz przewodność szparkową miały wpływ oba zastosowane zabiegi agrotechniczne. Zarówno współczynnik (WUE) jaki i (WUEI) zależały od zastosowanego nawadniania, nawożenia oraz warunków meteorologicznych panujących w okresie badawczym.
A field experiment was conducted in 2003 and 2005 at the Experimental Station Lipnik near Stargard, on acid brown soil. The soil is classified as quality class IVb, good rye complex, and for cultivation of light soils with low water retention useful. We evaluated the use of water for cherry grown under different water and fertilizer. The experiment was randomized block design in the system dependent (called a split-plot), in seven replications in the experiment. The research was conducted on trees in the fourth year after planting, fall within the third year of fruiting. Maintained grass between the trees, and rows of trees - herbicide fallow. The factor I was watering under-crown: O-control (without irrigation), W-irrigated sites, where soil water potential fell below 0.01 MPa. Irrigation system was used under-crown in which water was distributed by type of Hadar sprinkler scale spraying for cherry-1m. Second factor was the mineral fertilization NPK 0 - control (without fertilization), 2 NPK - 260 kg NPK. ha-1 (80 +60 +120). Nitrogen fertilizers applied in early spring, before moving the vegetation, while phosphorus and potassium in the autumn according to the agrotechnical. Based on water intensity ratio of photosynthesis to transpiration and photosynthetic rate were determined using (WUE) and photosynthetic rate of the instantaneous water use (WUEI). The obtained results indicate that the increase in photosynthetic activity, transpiration, and stomatal conductance had an impact both applied agrotechnical. Both the coefficient of efficiency (WUE) and (WUEI) used depended on irrigation, fertilization and meteorological conditions over the study period.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2011, 06
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza wykorzystania wody przez śliwę, w różnych warunkach wodnych i nawozowych
Analysis of the use of water by plum, in different conditions of water and fertilizer
Autorzy:
Jaroszewska, A.
Podsiadlo, C.
Powiązania:
https://bibliotekanauki.pl/articles/61101.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
drzewa owocowe
sliwy
uprawa roslin
nawadnianie
nawozenie mineralne
sliwa Cacanska Rana
wykorzystanie wody
fotosynteza
transpiracja
przewodnosc szparkowa
wspolczynnik wykorzystania wody
chwilowy wspolczynnik wykorzystania wody
Opis:
W eksperymencie przeprowadzonym w latach 2003 i 2005 w Stacji Doświadczalnej Lipnik, na glebie brunatnej kwaśnej, zaliczanej do IVb klasy bonitacyjnej, kompleksu żytniego dobrego, a pod względem uprawy do gleb lekkich o małej retencji wody użytecznej, oceniano wykorzystanie wody przez śliwy odm. ‘Čacanska Rana’ uprawianej w różnych warunkach wodnych i nawozowych. Doświadczenie przeprowadzono metodą losowanych podbloków w układzie zależnym (ang. split-plot), w czterech powtórzeniach, na drzewach w czwartym roku po posadzeniu, wchodzących w trzeci rok owocowania. Między drzewami utrzymywano murawę, a w rzędach drzew - ugór herbicydowy. Pierwszym czynnikiem było nawadnianie podkoronowe: O - kontrola (bez nawadniania), W – nawadnianie za pomocą minizraszaczy typu Hadar, gdy potencjał wodny gleby obniżył się poniżej - 0,01 MPa. Czynnikiem drugim było nawożenie mineralne: 0 NPK – kontrola (bez nawożenia), 2 NPK - 260 kg NPK·ha-1 (80+60+120). Nawozy azotowe stosowano wczesną wiosną, przed ruszeniem wegetacji, natomiast fosforowe i potasowe jesienią zgodnie z zaleceniami agrotechnicznymi. Na podstawie ilorazu intensywności fotosyntezy do transpiracji wyznaczono fotosyntetyczny współczynnik wykorzystania wody (WUE) i chwilowy fotosyntetyczny współczynnik wykorzystania wody (WUEI). Czynniki zastosowane w doświadczeniu - nawadnianie uzupełniające i nawożenie mineralne różnicowały wartości badanych cech. Oba badane współczynniki (WUE i WUEI) zależały od warunków meteorologicznych, jak i zabiegów agrotechnicznych (nawadnianie, nawożenie) stosowanych w trakcie trwania doświadczenia. Liście roślin nawożonych charakteryzowały się wyraźnie większą efektywnością wykorzystania wody.
A field experiment was conducted in 2003 and 2005 at the Experimental Station Lipnik on acid brown soil. The soil is classified as quality class IVb, good rye complex, and for cultivation of light soils with low water retention useful. Evaluated the use of water for plum grown under different water and fertilizer. The experiment was randomized block design in the system dependent (called a split-plot), in four replications in the experiment. The research was conducted on trees in the fourth year after planting, fall within the third year of fruiting. Maintained grass between the trees, and rows of trees – herbicide fallow. The factor first was watering under-crown: O-control (without irrigation),W-irrigated sites, where soil water potential fell below - 0.01 MPa. Irrigation system was used under- crown in which water was distributed by type of Hadar. Second factor was the mineral fertilization NPK 0 - control (without fertilization), 2 NPK - 260 kg NPK. ha-1 (80 +60 +120).Nitrogen fertilizers applied in early spring, before moving the vegetation, while phosphorus and potassium in the autumn according to the agrotechnical. Based on water intensity ratio of photosynthesis to transpiration and photosynthetic rate were determined using (WUE) and photosynthetic rate of the instantaneous water use (WUEI). Factors used in the experiment - supplementary irrigation and mineral fertilization - differentiated the values of the studies traits. Both the coefficient of efficiency (WUE) and (WUEI) used depended on irrigation, fertilization and meteorological conditions over the study period. The leaves of plants fertilized characterized by greater efficiency of water use.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2013, 2/I
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Najnowsze trendy w nawadnianiu upraw sadowniczych – prace badawcze związane z nawadnianiem roślin prowadzone w ISK w Skierniewicach
The latest trends in irrigation technology – Research related to irrigation of fruit crops conducted at the Research Institute of Pomology and Floriculture in Skierniewice
Autorzy:
Treder, W.
Klamkowski, K.
Krzewinska, D.
Tryngiel-Gac, A.
Powiązania:
https://bibliotekanauki.pl/articles/61600.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
sadownictwo
uprawy sadownicze
rosliny sadownicze
potrzeby wodne
efektywnosc produkcyjna wody
wykorzystanie wody
efektywnosc wykorzystania
nawadnianie
fertygacja
prace badawcze
Instytut Sadownictwa i Kwiaciarstwa Skierniewice
Opis:
Rośliny sadownicze charakteryzują się stosunkowo wysokimi wymaganiami wodnym, co potwierdzają wyniki dotychczasowych badań. Ograniczona dostępność słodkiej wody wymusza nie tylko rozwój techniki i technologii nawadniania, ale także poszukiwanie metod obniżenia ewaporacji, np. poprzez zastosowanie ściółek. W badaniach nad nawadnianiem, coraz większy nacisk kładzie się na poznanie reakcji na niekorzystne czynniki środowiska poszczególnych odmian roślin uprawnych. Dlatego też podejmuje się w ISK badania reakcji roślin sadowniczych na czynniki środowiska – głównie suszę. Badania nasze obejmują min. ocenę reakcji roślin sadowniczych na poziomie odmian. Wyniki tych doświadczeń są ważne nie tylko dla producentów, ale także dla hodowców nowych odmian. W wielu programach hodowlanych największych firm światowych wprowadza się kryterium odporności roślin na suszę. Nawadnianie roślin powinno być ściśle związane z ich prawidłowym nawożeniem. Wyposażenie sadu w instalacje nawodnieniową daje możliwość stosowania fertygacji – podawania nawozów wraz z wodą. Przy zastosowaniu odpowiedniej diagnostyki staje się ona odpowiednim narzędziem pomocnym do optymalizacji nawożenia roślin sadowniczych. Nowoczesne rozwiązania w nawadnianiu roślin sadowniczych, to połączenie możliwości stosowania nowych technologii, elementów diagnostyki nawadniania oraz hodowli nowych odmian roślin uwzględniającej ograniczenie potrzeb wodnych roślin i wzrost ich odporności na suszę.
Fruit crops have high water requirements. As sweet water is becoming scarce and expensive resource, development and improvement of irrigation technologies, and introduction of new water saving practices (e.g. mulching to limit evaporation losses) is necessary. Relatively little research has been conducted to determine different responses to unfavorable environmental conditions among various cultivars of fruit crops. Thus, studies have been undertaken at the Research Institute of Pomology and Floriculture to examine the influence of environmental stresses (mainly water deficiency) on plant life (growth, physiology and productivity). These researches are subjected to detailed assessment of genotypic differences in drought tolerance of various crop species. The obtained results are important not only for fruit growers, but also for plant breeders, as the enhanced resistance to stresses has become an important criterion in modern breeding programs. Balanced nutrition is essential for the health of plants. Modern practices allow farmers to apply fertilizers with water through drip irrigation systems (fertigation). Together with modern methods of nutrition diagnostics, fertigation has become a suitable tool for optimizing fruit crop fertilization. A new approach into sustainable water and nutrient management strategy should be a combination of modern irrigation and soil water monitoring techniques, elements of soil-plant nutrient diagnostics and breeding focused on production of genotypes with improved water-use efficiency and drought tolerance.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2009, 06
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie GIS w modelowaniu hydrogeologicznym na przykładzie ujęcia Serby
Application of GIS in groundwater modeling example of water intake Serba
Autorzy:
Zapart, J.
Powiązania:
https://bibliotekanauki.pl/articles/60502.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
wody podziemne
ujecia wody
ujecie wody Serby
eksploatacja
modele hydrogeologiczne
System Informacji Geograficznej
program ArcGIS
program Surfer
wykorzystanie
Opis:
Wykorzystanie wód podziemnych oraz eksploatacja i ochrona ich ujęć to jedne z ważniejszych zagadnień, którymi zajmuje się współczesna hydrogeologia. Niniejszy referat przedstawia możliwości wykorzystania Systemów Informacji Geograficznej (GIS) z zastosowaniem aplikacji ArcGis i Surfer do analizy danych archiwalnych i wyników badań terenowych. Dzięki zastosowaniu technik GIS szerokie spektrum informacji geograficznych, geologicznych i hydrogeologicznych zostało ujęte w formę bazy danych opisowych oraz połączonych z nią danych graficznych. Jako przykład pokazano użycie warstw informacyjnych stworzonych w wymienionym oprogramowaniu w modelowaniu hydrogeologicznym oraz w wyznaczeniu strefy ochronnej dla ujęcia Serby.
The most important issues modern hydrogeology is: exploitation and protection of groundwater intakes. This paper presents, the area where located is the water inake Serby, possibility of using Geographic Information System using applications Arcgis, Surfer for the analysis of archival data and results of field studies. Many geographic, geological and hydrogeological information presented in the described and graphical database. The result was the groundwater model and the protection zone for water intake Serby.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2010, 08/1
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Retencja wody opadowej i jej wykorzystanie do nawadniania roślin na przykładzie modeli dwóch gospodarstw roślin ozdobnych w 2014 roku
Rain water storing and using for plant watering according to the models of two ornamental plant farms in 2014
Autorzy:
Marosz, A.
Powiązania:
https://bibliotekanauki.pl/articles/60305.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
gospodarstwa ogrodnicze
produkcja roslinna
rosliny ozdobne
nawadnianie
wody opadowe
retencja wodna
splyw powierzchniowy
wykorzystanie
Opis:
Nawadnianie w produkcji roślin ozdobnych jest jednym z kluczowych czynników gwarantujących prawidłowy wzrost roślin, ich wysoką jakość i zdrowotność. Woda w produkcji roślin dzielona jest na dwa rodzaje: wodę potrzebną do nawadniania, której źródłem są strumienie, studnie, wodociągi. Drugim rodzajem jest woda pochodząca z opadów i nawadniania, której nadmiar trzeba często odprowadzać. Celem przeprowadzonych analiz na przykładzie dwóch modelowych gospodarstw było pokazanie możliwości retencjonowania wody opadowej i wykorzystania jej do nawadniania uprawianych roślin. Do badań wytypowano dwa nowoczesne gospodarstwa z produkcją roślin ozdobnych. Jedno w okolicach Wielunia z przewagą upraw kontenerowych (16ha) drugie w okolicach Bydgoszczy z przewagą upraw pod osłonami (3,9ha). Gospodarstwa przystosowane są do retencjonowania wody opadowej z powierzchni infrastruktury budowlanej i drogowej. Na podstawie przeprowadzonych obserwacji ustalono, że roczne zapotrzebowanie do nawadniania 1ha upraw kontenerowych przy wydatku jednorazowym od 21 do 22,5 m3 wynosi od 2268 do 2430m3 wody. Upraw pod osłonami przy wydatku jednorazowym od 11,1 do 12,4 wynosi 1451,1 do 1798 m3. W badanych gospodarstwach zgromadzono 23,5 tys. m3 wody – przy rocznych opadach w lokalizacji koło Wielunia 616,8mm i 25,0 tys. m3 wody przy rocznych opadach 547,2mm w lokalizacji koło Bydgoszczy. Ilość zgromadzonej wody pozwoliła na całkowite pokrycie zapotrzebowania na wodę do nawadniania w gospodarstwie koło Bydgoszczy i pokrycie 57,2 % zapotrzebowania na wodę do nawadniania w gospodarstwie koło Wielunia.
Irrigation in ornamental plants production is one of the most important factor guaranteed good growth of plants, their high quality and healthiness. Water needed in plants production is divided into two types: water which is needed for irrigation with main sources like streams, rivers, deep wells or even waterworks. Second type of water in plants production is natural precipitation and irrigation. Excess of this water must be drainage and transfer to ditches or retention basins. The aim of this analysis based on two models of ornamental holdings was to point out great possibilities of rainwater retention and its uses for plants irrigation. For this research two modern, different farms were chosen. One of them with greater area of container plant production (16 ha) located near Wieluń city. Other with great area of greenhouse production (3,9 ha) located near Bydgoszcz city. These farms already made some adjustments for rainwater retention from roofs and roads within farms. According to once requirement of water for 1 ha of container plant irrigation which was 21 and 22,5 m3, total yearly amount of water was determined between 2268 and 2430 m3. For greenhouse production once requirement of water for 1 ha plants irrigation was lower: 11,1 and 12,4 m3, and total yearly requirement was respectively 1454,1 and 1798 m3. In the monitored farm in Wieluń during year 2014 about of 23500 m3 of water was storage according to yearly rainfall amount 616,8 mm. In the second farm located near Bydgoszcz 25000 m3 of rainwater was stored according to yearly rainfall amount 547,2 mm. These amounts of retained water satisfied demand to whole requirement for irrigation in the farm near Bydgoszcz, and 57,2 % of total requirements for irrigation in the farm near Wieluń.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2015, I/1
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metodyka opracowania map podatności wód podziemnych na zanieczyszczenia przez pestycydy organiczne
Method of mapping groundwater vulnerability to pollution by organic pesticides
Autorzy:
Kajewski, I.
Powiązania:
https://bibliotekanauki.pl/articles/60181.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
zanieczyszczenia wod
pestycydy
wody podziemne
podatnosc na zanieczyszczenie
mapy podatnosci wod na zanieczyszczenie
metodyka
System Informacji Geograficznej
wykorzystanie
Opis:
Do opracowania mapy podatności wód podziemnych na zanieczyszczenie przez pestycydy organiczne może być wykorzystany system oparty na liczbowych indeksach AF, zaproponowany przez Rao i wsp. [1985]. Indeks AF uwzględnia zjawiska adwekcji, sorpcji oraz rozkładu pestycydu zachodzące w czasie jego migracji przez strefę aeracji. Zastosowanie indeksu AF na określonym obszarze wymaga zebrania danych dotyczących miąższości strefy aeracji, natężenia infiltracji efektywnej oraz danych glebowych, obejmujących gęstość objętościową i zawartość węgla organicznego, a ponadto danych dotyczących właściwości pestycydów (współczynnik sorpcji i czas połowicznego rozkładu). Najbardziej efektywną metodą analizy danych przestrzennych prowadzącą do opracowania przestrzennego rozkładu indeksu AF na analizowanym obszarze są systemy GIS. Nakreślona w niniejszej pracy koncepcja mapy podatności wód podziemnych na zanieczyszczenie przez pestycydy organiczne wymaga opracowania dwóch map numerycznych (rastrowych) przedstawiających dla określonego obszaru przestrzenną zmienność parametrów A i B, określonych parą równań (8), na podstawie których użytkownik systemu komputerowego, wykorzystując wzór (10) może w środowisku GIS samodzielnie utworzyć i wydrukować mapę podatności dla wybranego przez siebie konkretnego pestycydu.
Maps of groundwater vulnerability to pollution by organic pesticides can by elaborated using Attenuation Factor (AF) approach, evaluated by Rao et al. in 1985. AF concept takes into account such transport phenomena as: advection, sorption and, biodegradation. AF model requires data on hydrogeology, groundwater recharge, soil environment properties (dry bulk density and organic carbon content) as well as pesticide properties as half-life decay and sorption coefficient of pesticide by organic matter. Nowadays GIS environment is the most suitable tool for mapping groundwater vulnerability to pollution according to AF approach. The presented concept consists on modification of original Rao’s concept (equation 7) to the form given by equation 10. Firstly two numerical maps (grids) for spatial distribution of parameters A and B (according to equation (8)) have to be created and next any individual user will be able to create the vulnerability map on his own for given pesticide. Visualizations (maps) of groundwater vulnerability to pollution by organic pesticides should be used as supplementary tools by farmers and extension services, local water and environmental authorities as well as by legislative bodies.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2008, 09
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies