Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neuro fuzzy model" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Trendy i problemy w diagnostyce procesów
Trends and problems in diagnostics
Autorzy:
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/328569.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka procesów
model-based structure
układ z modelem
obserwator o nieznanych wejściach
sztuczne sieci neuronowe
logika rozmyta
sieci neuronowo-rozmyte
algorytmy ewolucyjne
process diagnosis
unknown input observers
artificial neural networks
fuzzy logic
neuro-fuzzy systems
evolutionary algorithms
Opis:
W ostatnich latach w systemach detekcji i lokalizacji uszkodzeń dla układów dynamicznych stosuje się zintegrowane ilościowe i jakościowe modele informacji, a większość z nich oparta jest na modelach obliczeń inteligentnych. Celem niniejszej pracy jest prezentacja nowych metod i technik analitycznych oraz obliczeń inteligentnych w systemach diagnostyki procesów. Przyjmując strukturę układu diagnostyki z modelem omawia się możliwości stosowania modeli analitycznych, a przede wszystkim obserwatorów o nieznanych wejściach. Szerzej rozpatruje się alternatywne podejścia oparte na wykorzystaniu metod obliczeń inteligentnych, takich jak sztuczne sieci neuronowe, logika rozmyta, sieci neuronowo-rozmyte oraz algorytmy ewolucyjne do rozwiązywania zadań globalnej optymalizacji. Dla zilustrowania efektywności metod sztucznych sieci neuronowych typu GMDH w układach diagnostyki w końcowej części referatu rozpatruje się problem diagnostyki urządzenia wykonawczego w Cukrowni Lublin.
Recents approaches to Fault Detection and Isolation (FDI) for dynamic systems use methods of integrating quantitative and qualitative model information, and most of these are based on soft computing methods. The purpose of this paper is to present new methods and applications in the field of analytical and soft computing techniques for fault diagnosis of processes. Taking into account the model-based structure of a diagnostics system, possible applications of analytical models, and first of all unknown input observers, are considered. Alternative soft computing methods such as artificial neural networks, fuzzy logic, neuro-fuzzy structures and evolutionary algorithms for global optimization problems are presented and discussed in greater detail. To illustrate the effectiveness of GMDH artificial neural networks in fault diagnosis, an industrial valve actuator system in a sugar factory (Cukrownia Lublin S.A., Poland) is tested.
Źródło:
Diagnostyka; 2004, 30, T. 1; 275-286
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies