Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "classification model" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Novel diabetes classification approach based on CNN-LSTM: enhanced performance and accuracy
Autorzy:
Ayat, Yassine
Benzekri, Wiame
El Moussati, Ali
Mir, Ismail
Benzaouia, Mohammed
El Aouni, Abdelaziz
Powiązania:
https://bibliotekanauki.pl/articles/31341646.pdf
Data publikacji:
2024
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diabetes
diabetes classification
dataset balancing
combined model
personalized healthcare
Opis:
This paper deals with the development of an approach for diabetes classification harnessing ConvolutionalNeural-network (CNN) and a Long-Short-Term-Memory (LSTM) model. The proposed method harnesses the strengths of LSTM and CNN architectures to effectively capture sequential patterns and extract meaningful features from the input data. A comprehensive dataset containing relevant features for diabetes patients is used to train and evaluate the classifiers. Evaluation metrics such as kappa score, F1-score, accuracy, precision, and recall are employed in ordre to assess the performance of each model. The results demonstrate that the CNNLSTM model outperforms other models, including Logistic Regression, Random Forest, SVM, and KNN, achieving an impressive accuracy of 97%. These findings shed light on the effectiveness of the proposed approach in accurately classifying diabetes, resulting in significant advancement in diabetes diagnosis and treatment and opening up exciting possibilities for personalized healthcare.
Źródło:
Diagnostyka; 2024, 25, 1; art. no. 2024112
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System diagnostyki małych silników prądu stałego z wykorzystaniem metody identyfikacji
System of diagnostics of small dc motors with the usage of identification method
Autorzy:
Hanzel, M.
Moczulski, W.
Powiązania:
https://bibliotekanauki.pl/articles/328537.pdf
Data publikacji:
2007
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka
wykorzystanie modelu
identyfikacja
silnik elektryczny małej mocy
detekcja uszkodzeń
klasyfikacja residuów
logika rozmyta
model-based diagnostics
diagnostics through identification
small-power DC motor
fault detection
classification of residuals
fuzzy logic
Opis:
W referacie opisano system diagnostyki małych silników prądu stałego, stosowanych w samochodach osobowych. Zaprojektowanie, skonstruowanie stanowiska pomiarowego, opracowanie metody i oprogramowania, a także weryfikacja takiego systemu były przedmiotem pracy dyplomowej magisterskiej pierwszego z autorów. Zastosowane podejście bazuje na modelu analitycznym silnika, opisującym część elektryczną i mechaniczną. Do detekcji i lokalizacji uszkodzeń wykorzystuje się dwie stałe: elektromechaniczną stałą czasową oraz elektromagnetyczną stałą czasową obwodu twornika. Estymacja wartości tych stałych następuje na podstawie zmierzonych wielkości: prędkości obrotowej i parametrów elektrycznych. Uzyskane wyniki porównywane są z wartościami wzorcowymi otrzymanymi z modelu. Otrzymane residua są klasyfikowane z wykorzystaniem prostego algorytmu progowego, a także przez rozmytą sieć neuronową. Wstępne badania weryfikacyjne, przeprowadzone dla kilku obiektów tego samego typu, potwierdziły poprawne działanie systemu.
The paper deals with a system of diagnostics of small DC motors that are applied in personal cars. Design and development of a measuring stand, development of a method and respective software, and verification of this system were the subject of MSc thesis of the first author. The approach to the problem is based on analytical model of the motor, which describes both the electrical and mechanical parts of the object. Two time constants are applied in order to detect and isolate faults: electro-mechanical one and electro-magnetic time constant of the rotor circuit. These constants are estimated basing on such measured quantities as rotating speed and electric parameters. The obtained results are compared with pattern values calculated from the model. Received residuals are classified by using simple threshold algorithm, and by fuzzy neural network. The initial verification carried out for several motors of the same type confirmed correct operation of the diagnostic system.
Źródło:
Diagnostyka; 2007, 1(41); 67-74
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies