Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "LS" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Prediction of critical flashover voltage of polluted insulators under sec and rain conditions using least squares support vector machines (LS-SVM)
Autorzy:
Mahdjoubi, Abdelhalim
Zegnini, Boubakeur
Belkheiri, Mohammed
Powiązania:
https://bibliotekanauki.pl/articles/328898.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
LS-SVM
flashover
modelling
polluted insulator
GMDL
przeskok
modelowanie
izolator
Opis:
This paper describes a methodology that was developed for the prediction of the critical flashover voltage of polluted insulators under sec and rain conditions least squares support vector machines (LS-SVM) optimization. The methodology uses as input variable characteristics of the insulator such as diameter, height, creepage distance, and the number of elements on a chain of insulators. The estimation of the flashover performance of polluted insulators is based on field experience and laboratory tests are invaluable as they significantly reduce the time and labour involved in insulator design and selection. The majority of the variables to be predicted are dependent upon several independent variables. The results from this work are useful to predict the contamination severity, critical flashover voltage as a function of contamination severity, arc length, and especially to predict the flashover voltage. The validity of the approach was examined by testing several insulators with different geometries. A comparison with the Grouping Multi-Duolateration Localization (GMDL) method proves the accuracy and goodness of LS-SVM. Moreover LS-SVMs give a good estimation of results which are validated by experimental tests.
Źródło:
Diagnostyka; 2019, 20, 1; 49-54
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Least square support vectors machines approach to diagnosis of stator winding short circuit fault in induction motor
Autorzy:
Birame, M’hamed
Taibi, Djamel
Bessedik, Sid Ahmed
Benkhoris, Mohamed Fouad
Powiązania:
https://bibliotekanauki.pl/articles/327458.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
induction motor
inter-turn short circuit
fault diagnosis
least square support vector machine
LS-SVM
silnik indukcyjny
zwarcie międzyzwojowe
diagnostyka uszkodzeń
Opis:
Various approaches have been proposed to monitor the state of machines by intelligent techniques such as the neural network, fuzzy logic, neuro-fuzzy, pattern recognition. However, the use of LS-SVM. This article presents an automatic computerized system for the diagnosis and the monitoring of faults between turns of the stator in IM applying the LS-SVM least square support vector machine. in this study for the detection of short circuit faults in the stator winding of the induction motor. Since it requires a mathematical model suitable for modelling defects, a defective IM model is presented. The proposed method uses the stator current as input and at the output decides the state of the motor, indicating the severity of the short-circuit fault.
Źródło:
Diagnostyka; 2020, 21, 4; 35-41
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of partial rotor bar rupture of a cage induction motor using least square support vector machine approach
Autorzy:
Birame, M’hamed
Bessedik, Sid Ahmed
Benkhoris, Mohamed Fouad
Powiązania:
https://bibliotekanauki.pl/articles/1840890.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
fault diagnosis
partial rupture rotor bar
spectral analysis
least square support vector machine
LS-SVM
diagnostyka uszkodzeń
silnik indukcyjny
wirnik
analiza widmowa
maszyna wektorów nośnych
Opis:
Squirrel cage induction motors suffer from numerous faults, for example cracks in the rotor bars. This paper aims to present a novel algorithm based on Least Squares Support Vector Machine (LS-SVM) for detection partial rupture rotor bar of the squirrel cage asynchronous machine. The stator current spectral analysis based on FFT method is applied in order to extract the fault frequencies related to rotor bar partial rupture. Afterward the LS-SVM approach is established as monitoring system to detect the degree of rupture rotor bar. The training and testing data sets used are derived from the spectral analysis of one stator phase current, containing information about characteristic harmonics related to the partial rupture rotor bar. Satisfactory and more accurate results are obtained by applying LS-SVM to fault diagnosis of rotor bar.
Źródło:
Diagnostyka; 2021, 22, 1; 57-63
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies