Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieć neuronowa RBF" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Prognozowanie uszkodzeń przekładni mostu napędowego z wykorzystaniem wstępnego przetwarzania sygnału drgań w połączeniu z sieciami neuronowymi typu RBF
Rear axle gear damage prediction using vibration signal preprocessing coupled with RBF neural networks
Autorzy:
Shao, Y.
Li, X.
Mechefske, Ch. K.
Chen, Z.
Powiązania:
https://bibliotekanauki.pl/articles/301429.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
uszkodzenie
predykcja
sygnały drganiowe
sieć neuronowa typu RBF
damage
prediction
vibration signals
RBF neural network
Opis:
Przekładnia mostu pędnego stanowi kluczową część samochodowego układu przeniesienia napędu, a trafne przewidywanie uszkodzeń jest istotne dla bezpiecznego użytkowania samochodu. Jednakże precyzja przewidywania uszkodzenia przekładni jest obecnie niska ze względu na zmienne prędkości obrotowe i zmieniające się obciążenia występujące podczas używania pojazdu. W celu zredukowania zmienności drgań i zwiększenia trafności przewidywania trwałości resztkowej przekładni, w artykule zaproponowano nową metodę predykcyjną, która łączy sieć neuronową o radialnych funkcjach bazowych (RBF) i rekurencyjne przetwarzanie wstępne. Metoda rekurencyjnego przetwarzania wstępnego zmniejsza wpływ zmienności chwilowego obciążenia i prędkości na charakterystyczne parametry uzyskane z sygnałów drganiowych. Sieć neuronowa typu RBF modeluje nieliniowe charakterystyki przenoszenia napędu przez przekładnię mostu pędnego. Sieć taka charakteryzuje się zachowaniem samoadaptacyjnym i szybką zbieżnością. Wyniki badań symulacyjnych i eksperymentalnych pokazują, że ta nowa metoda może pozwolić na udoskonalenie tradycyjnych metod predykcyjnych oraz osiąganie wysokiej precyzji w przewidywaniu uszkodzeń przekładni mostu pędnego.
The rear axle gear is a key part of the automobile transmission system and accurate damage prediction is important for car safety. However, the precision of gear damage prediction is currently low because of the varying rotating speeds and the changing loads when a truck is in use. In order to reduce the fluctuation of vibrations and enhance the predicting accuracy of gear residual life, a new predictive method, which combines the Radial Basis Function (RBF) neural network with recursive preprocessing is proposed in this paper. The recursive preprocessing method reduces the effects of instantaneous load and speed fluctuations on the characteristic parameters extracted from vibration signals. The RBF neural network models the non-linear characteristics of the rear axle gear transmission. The RBF neural network is characterized by its self-adaptive behavior and its rapid convergence. The simulated and experimental results have shown that this new method can enhance traditional prediction methods and obtain high precision for the damage prediction of rear axle gears.
Źródło:
Eksploatacja i Niezawodność; 2009, 4; 57-64
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies