Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "prior model" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Spatial and temporal aspects of prior and likelihood data choices for Bayesian models in road traffic safety analyses
Przestrzenny i czasowy aspekt wyboru rozkładów apriorycznych i danych dla funkcji wiarygodności dla modeli bayesowskich w analizach bezpieczeństwa ruchu drogowego
Autorzy:
Nowakowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/1365610.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
Bayesian regression model
informative prior distributions for model parameters
likelihood data
statistical classifier
road accident severity
road accident features
model regresji bayesowskiej
informatywne rozkłady aprioryczne parametrów modelu
wiarygodność bayesowska
klasyfikator statystyczny
status wypadku drogowego
cechy wypadku drogowego
Opis:
In a Bayesian regression model, parameters are not constants, but random variables described by some posterior distributions. In order to define such a distribution, two pieces of information are combined: (1) a prior distribution that represents previous knowledge about a model parameter and (2) a likelihood function that updates prior knowledge. Both elements are analysed in terms of implementing the Bayesian approach in road safety analyses. A Bayesian multiple logistic regression model that classifies road accident severity is investigated. Three groups of input variables have been considered in the model: accident location characteristics, at fault driver’s features and accident attributes. Since road accidents are scattered in space and time, two aspects of information source choices in the Bayesian modelling procedure are proposed and discussed: spatial and temporal ones. In both aspects, priors are based on selected data that generate background knowledge about model parameters – thus, prior knowledge has an informative property. Bayesian likelihoods which modify priors are data that deliver: (1) information specific to a road – in the spatial aspect or (2) the latest information – in the temporal aspect. The research experiments were conducted to illustrate the approach and some conclusions have been drawn.
Parametry bayesowskiego modelu regresji nie są wartościami stałymi tylko zmiennymi losowymi opisanymi przez pewne rozkłady aposterioryczne. W celu zdefiniowania takiego rozkładu łączy się dwa źródła informacji: (1) rozkład aprioryczny, który reprezentuje wcześniejszą wiedzę o parametrze modelu oraz (2) funkcję wiarygodności (wiarygodność bayesowską), która uaktualnia wiedzę a’priori. Oba te elementy są przedmiotem badań w kontekście wykorzystania podejścia bayesowskiego w analizach bezpieczeństwa ruchu drogowego. Badaniom podlega model wielokrotnej regresji logistycznej, który klasyfikuje status zdarzenia drogowego. W modelu uwzględniono trzy grupy zmiennych objaśniających: charakterystyki miejsca lokalizacji wypadku, cechy kierującego sprawcy oraz atrybuty wypadku. Ponieważ wypadki drogowe są rozproszone w czasie i przestrzeni, zaproponowano i poddano dyskusji dwa aspekty wyboru źródeł informacji w procedurze modelowania bayesowskiego: czasowy i przestrzenny. W obu podejściach rozkłady aprioryczne są definiowane na podstawie danych wybranych jako te, które generują uogólnioną wiedzę o parametrach modelu, tworząc tło podlegające modyfikacji – w ten sposób wiedza aprioryczna ma cechę informatywności. Wiarygodność bayesowska, modyfikująca rozkłady a’priori, jest definiowana za pomocą danych wprowadzających: (1) informację specyficzną dla wybranej drogi – w przypadku aspektu przestrzennego lub (2) informację najnowszą – w przypadku aspektu czasowego. Zaproponowane podejście zilustrowano w eksperymentach badawczych i przedstawiono wynikające z nich wnioski.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 1; 68-75
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies