Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "monitorowanie danych" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Podejmowanie decyzji eksploatacyjnych w oparciu o fuzję różnego typu danych
Maintenance Decision Making based on different types of data fusion
Autorzy:
Galar, D.
Gustafson, A.
Tormos, B.
Berges, L.
Powiązania:
https://bibliotekanauki.pl/articles/301602.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
eksploracja danych
pozostały okres użytkowania (RUL)
fuzja danych
monitorowanie stanu
CMMS
data mining
RUL
data fusion
condition monitoring
Opis:
Over the last decade, system integration is applied more as it allows organizations to streamline business processes. A recent development in the asset engineering management is to leverage the investment already made in process control systems. This allows the operations, maintenance, and process control teams to monitor and determine new alarm level based on the physical condition data of the critical machines. Condition-based maintenance (CBM) is a maintenance philosophy based on this massive data collection, wherein equipment repair or replacement decisions depend on the current and projected future health of the equipment. Since, past research has been dominated by condition monitoring techniques for specific applications; the maintenance community lacks a generic CBM implementation method based on data mining of such vast amount of collected data. The methodology would be relevant across different domains. It is necessary to integrate Condition Monitoring (CM) data with management data from CMMS (Computer Maintenance Management Systems) which contains information, such as: component failures, failure information related data, servicing or repairs, and inventory control and so on. These systems are the core of traditional scheduled maintenance practices and rely on bulk observations from historical data to make modifications to regulated maintenance actions. The most obvious obstacle in the integration of CMMS, process and CM data is the disparate nature of the data types involved, and there have benn several attempts to remedy this problem. Although, there have been many recent efforts to collect and maintain large repositories of these types of data, there have been relatively few studies to identify the ways these to datasets could be related. This paper attempts to fulfill that need by proposing a combined data mining-based methodology for CBM considering CM data and Historical Maintenance Management data. It shows a system integration of physical and management data that also supports business intelligence and data mining where data sets can be combined in non-traditional ways.
W ostatniej dekadzie coraz częściej stosuje się integrację systemów, która pozwala przedsiębiorstwom zwiększać wydajność procesów biznesowych. Nowością w zarządzaniu infrastrukturą techniczną jest zwiększanie efektywności już poczynionych inwestycji w systemy kontroli procesów. Pozwala to zespołom do spraw operacyjnych, utrzymania ruchu oraz kontroli procesów monitorować i ustalać nowe poziomy alarmowe na podstawie danych o stanie fizycznym maszyn krytycznych. Utrzymanie urządzeń zależne od ich bieżącego stanu technicznego (condition-based maintenance, CBM) to filozofia utrzymania ruchu opierająca się na tym masowym poborze danych, wedle której decyzje dotyczące naprawy lub wymiany sprzętu zależą od jego obecnego oraz przewidywanego przyszłego stanu technicznego. Ponieważ dotychczasowe badania były zdominowane przez problem technik monitorowania stanu dla konkretnych aplikacji, nie opracowano ogólnej metody wdrażania CBM opartej na eksploracji (data mining ) owych olbrzymich ilości zebranych danych, która miałaby zastosowanie w różnych domenach. Konieczna jest integracja danych z monitorowania stanu (condition monitoring, CM) z danymi dotyczącymi zarządzania pochodzącymi ze skomputeryzowanych systemów zarządzania utrzymaniem ruchu (CMMS), które zawierają informacje na temat uszkodzeń elementów składowych, dane związane z uszkodzeniami, a także informacje dotyczące obsługi lub napraw czy sterowania zapasami. Systemy te stanowią podstawę tradycyjnych praktyk obsługi planowej, a zasadzają się na całościowych obserwacjach dokonywanych na podstawie danych eksploatacyjnych, które pozwalają modyfikować regulowane działania obsługowe. Najbardziej oczywistą przeszkodą w integracji danych CMMS, danych procesowych oraz danych z monitorowania stanu jest rozbieżność ich natury. Dotychczas podjęto jedynie kilka prób rozwiązania tego problemu. Chociaż ostatnio wiele wysiłku włożono w gromadzenie i utrzymanie dużych zasobów tego typu danych, istnieje stosunkowo niewiele badań na temat możliwych sposobów powiązania owych zestawów danych. W prezentowanej pracy poczyniono próbę wypełnienia tej luki proponując metodologię łączoną opartą na eksploracji danych dla celów CBM, która bierze pod uwagę dane z monitorowania stanu i eksploatacyjne dane z zarządzania ruchem. W pracy przedstawiono integrację systemową danych fizycznych i danych z zarządzania, która wspiera także analitykę biznesową (business intelligence) oraz eksplorację danych, gdzie zestawy danych można łączyć w sposób nietradycyjny.
Źródło:
Eksploatacja i Niezawodność; 2012, 14, 2; 135-144
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decision support and maintenance system for natural hazards, processes and equipment monitoring
System wspomagania decyzji dla monitorowania zagrożeń naturalnych, procesów i urządzeń
Autorzy:
Kozielski, M.
Sikora, M.
Wróbel, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/300692.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
decision support system
prediction
expert system
data cleaning
process monitoring
device monitoring
hazard
system wspomagania decyzji
czyszczenie danych
predykcja
system ekspertowy
monitorowanie procesów
monitorowanie urządzeń
monitorowanie zagrożeń
Opis:
This paper presents the DISESOR integrated decision support system and its applications. The system integrates data from different monitoring and dispatching systems and contains such modules as data preparation and cleaning, analytical, prediction and expert system. Architecture of the system is presented in the paper and a special focus is put on the presentation of two issues: data integration and cleaning, and creation of prediction model. The work contains also two case studies presenting the examples of the system application.
W pracy przedstawiono zintegrowany system wspomagania decyzji DISESOR oraz jego zastosowania. System pozwala na integrację danych pochodzących z różnych systemów monitorowania i systemów dyspozytorskich. Struktura systemu DISESOR składa się z modułów realizujących: przygotowanie i czyszczenie danych, analizę danych, zadania predykcyjne oraz zadania systemu ekspertowego. W pracy przedstawiono architekturę systemu DISESOR, a szczególny nacisk został położony na zagadnienia związane z integracją i czyszczeniem danych oraz tworzeniem modeli predykcyjnych. Działanie systemu przedstawione zostało na dwóch przykładach analizy dla danych rzeczywistych.
Źródło:
Eksploatacja i Niezawodność; 2016, 18, 2; 218-228
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies