Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "learning network" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Predictive modelling of turbofan engine components condition using machine and deep learning methods
Autorzy:
Matuszczak, Michał
Żbikowski, Mateusz
Teodorczyk, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1841686.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability
prognostics
deep learning
machine learning
gas turbine
turbofan engine
neural network
condition-based maintenance
Opis:
The article proposes an approach based on deep and machine learning models to predict a component failure as an enhancement of condition based maintenance scheme of a turbofan engine and reviews currently used prognostics approaches in the aviation industry. Component degradation scale representing its life consumption is proposed and such collected condition data are combined with engines sensors and environmental data. With use of data manipulation techniques, a framework for models training is created and models' hyperparameters obtained through Bayesian optimization. Models predict the continuous variable representing condition based on the input. Best performed model is identified by detemining its score on the holdout set. Deep learning models achieved 0.71 MSE score (ensemble meta-model of neural networks) and outperformed significantly machine learning models with their best score at 1.75. The deep learning models shown their feasibility to predict the component condition within less than 1 unit of the error in the rank scale.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 2; 359-370
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An attempt at applying machine learning in diagnosing marine ship engine turbochargers
Autorzy:
Adamkiewicz, Andrzej
Nikończuk, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2200936.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
machine learning
compressor diagnosis
marine ship engine
operational decision
neural
network
Opis:
The article presents a diagnosis of turbochargers in the supercharging systems of marine engines in terms of maintenance decisions. The efficiency of turbocharger rotating machines was defined. The operating parameters of turbocharging systems used to monitor the correct operation and diagnose turbochargers were identified. A parametric diagnostic test was performed. Relationships between parameters for use in machine learning were selected. Their credibility was confirmed by the results of the parametric test of the turbocharger system and the main engine, verified by the coefficient of determination. A particularly good fit of the describing functions was confirmed. As determinants of the technical condition of a turbocharger, the relationship between the rotational speed of the engine shaft, the turbocharger rotor assembly and the charging air pressure was assumed. In the process of machine learning, relationships were created between the rotational speed of the engine shaft and the boost pressure, and the indicator of the need for maintenance. The accuracy of the maintenance decisions was confirmed by trends in changes in the efficiency of compressors.
Źródło:
Eksploatacja i Niezawodność; 2022, 24, 4; 795--804
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Remaining useful life prediction with insufficient degradation data based on deep learning approach
Autorzy:
Lyu, Yi
Jiang, Yijie
Zhang, Qichen
Chen, Ci
Powiązania:
https://bibliotekanauki.pl/articles/2038109.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
deep learning
remaining useful life
degradation data
data amplification
cycle-consistent generative adversarial network
Opis:
Remaining useful life (RUL) prediction plays a crucial role in decision-making in conditionbased maintenance for preventing catastrophic field failure. For degradation-failed products, the data of performance deterioration process are the key for lifetime estimation. Deep learning has been proved to have excellent performance in RUL prediction given that the degradation data are sufficiently large. However, in some applications, the degradation data are insufficient, under which how to improve the prediction accuracy is yet a challenging problem. To tackle such a challenge, we propose a novel deep learning-based RUL prediction framework by amplifying the degradation dataset. Specifically, we leverage the cycle-consistent generative adversarial network to generate the synthetic data, based on which the original degradation dataset is amplified so that the data characteristics hidden in the sample space could be captured. Moreover, the sliding time window strategy and deep bidirectional long short-term memory network are employed to complete the RUL prediction framework. We show the effectiveness of the proposed method by running it on the turbine engine data set from the National Aeronautics and Space Administration. The comparative experiments show that our method outperforms a case without the use of the synthetically generated data.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 4; 745-756
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent fault diagnosis of rolling bearings based on continuous wavelet transform-multiscale feature fusion and improved channel attention mechanism
Autorzy:
Zhang, Jiqiang
Kong, Xiangwei
Cheng, Liu
Qi, Haochen
Yu, Mingzhu
Powiązania:
https://bibliotekanauki.pl/articles/24200817.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
deep learning
continuous wavelet transform
improved channel attention mechanism
multi-conditions
convolutional neural network
Opis:
Accurate fault diagnosis is critical to operating rotating machinery safely and efficiently. Traditional fault information description methods rely on experts to extract statistical features, which inevitably leads to the problem of information loss. As a result, this paper proposes an intelligent fault diagnosis of rolling bearings based on a continuous wavelet transform(CWT)-multiscale feature fusion and an improved channel attention mechanism. Different from traditional CNNs, CWT can convert the 1-D signals into 2-D images, and extract the wavelet power spectrum, which is conducive to model recognition. In this case, the multiscale feature fusion was implemented by the parallel 2-D convolutional neural networks to accomplish deeper feature fusion. Meanwhile, the channel attention mechanism is improved by converting from compressed to extended ways in the excitation block to better obtain the evaluation score of the channel. The proposed model has been validated using two bearing datasets, and the results show that it has excellent accuracy compared to existing methods.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 1; art. no. 16
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence-based hybrid forecasting models for manufacturing systems
Autorzy:
Rosienkiewicz, Maria
Powiązania:
https://bibliotekanauki.pl/articles/1841698.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
artificial neural network
support vector machine
extreme learning machine
hybrid forecasting
production planning
maintenance
quality control
Opis:
The paper addresses the problem of forecasting in manufacturing systems. The main aim of the research is to propose new hybrid forecasting models combining artificial intelligencebased methods with traditional techniques based on time series – namely: Hybrid econometric model, Hybrid artificial neural network model, Hybrid support vector machine model and Hybrid extreme learning machine model. The study focuses on solving the problem of limited access to independent variables. Empirical verification of the proposed models is built upon real data from the three manufacturing system areas – production planning, maintenance and quality control. Moreover, in the paper, an algorithm for the forecasting accuracy assessment and optimal method selection for industrial companies is introduced. It can serve not only as an efficient and costless tool for advanced manufacturing companies willing to select the right forecasting method for their particular needs but also as an approach supporting the initial steps of transformation towards smart factory and Industry 4.0 implementation.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 2; 263-277
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel reliability estimation method of multi-state system based on structure learning algorithm
Nowatorska metoda oceny niezawodności systemów wielostanowych w oparciu o algorytm uczenia struktury
Autorzy:
Li, Zhifeng
Wang, Zili
Ren, Yi
Yang, Dezhen
Lv, Xing
Powiązania:
https://bibliotekanauki.pl/articles/301718.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability analysis
Bayesian network
structure learning
multi-state system (MSS)
dependent failure
analiza niezawodności
sieć bayesowska
uczenie struktury
system wielostanowy
uszkodzenie zależne
Opis:
Traditional reliability models, such as fault tree analysis (FTA) and reliability block diagram (RBD), are typically constructed with reference to the function principle graph that is produced by system engineers, which requires substantial time and effort. In addition, the quality and correctness of the models depend on the ability and experience of the engineers and the models are difficult to verify. With the development of data acquisition, data mining and system modeling techniques, the operational data of a complex system considering multi-state, dependent behavior can be obtained and analyzed automatically. In this paper, we present a method that is based on the K2 algorithm for establishing a Bayesian network (BN) for estimating the reliability of a multi-state system with dependent behavior. Facilitated by BN tools, the reliability modeling and the reliability estimation can be conducted automatically. An illustrative example is used to demonstrate the performance of the method.
Tradycyjne modele niezawodności, takie jak analiza drzewa błędów (FTA) czy schemat blokowy niezawodności (RBD), buduje się zazwyczaj w oparciu o tworzone przez inżynierów systemowych schematy zasad działania systemu, których przygotowanie wymaga dużych nakładów czasu i pracy. Jakość i poprawność tych modeli zależy od umiejętności i doświadczenia inżynierów, a same modele są trudne do zweryfikowania. Dzięki rozwojowi technik akwizycji i eksploracji danych oraz modelowania systemów, dane operacyjne złożonego systemu uwzględniające jego zależne, wielostanowe zachowania mogą być pozyskiwane i analizowane automatycznie. W artykule przedstawiono metodę konstrukcji sieci bayesowskiej (BN) opartą na algorytmie K2, która pozwala na ocenę niezawodności systemu wielostanowego o zachowaniach zależnych. Dzięki narzędziom BN, modelowanie i szacowanie niezawodności może odbywać się automatycznie. Działanie omawianej metody zilustrowano na podstawie przykładu.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 1; 170-178
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies