Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Deep Learning." wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Camera-based PHM method in rotating machinery equipment micro-action scenarios
Autorzy:
Junfeng, An
Liu, Jiqiang
Zhen, Hao
Mengmeng, Lu
Powiązania:
https://bibliotekanauki.pl/articles/24200809.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
deep learning
condition monitoring
Rmcad
anomaly detection
defect early warning
Opis:
The health operation of rotating machinery guarantees safety of the project. To ensure a good operating environment, current subway equipment inspections frequency is high, resulting in a waste of resources. Small abnormal changes in mechanical equipment will also contribute to the development of mechanical component defects, which will ultimately lead to the failure of the equipment. Therefore, mechanical equipment defects should be detected and diagnosed as soon as possible. Through the use of graphic processing and deep learning, this paper proposes Rmcad Framework with three aspects: condition monitoring, anomaly detection, defect early warning. Using a network algorithm, this paper proposes an improved model that has the characteristics of two-stream and multi-loss functions, which improves the accuracy of detection. Additionally, a defect warning method is constructed to improve the perception ability of equipment before failure occurs and reduce the frequency of frequent maintenance by detecting anomalies according to the degree of opening.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 1; art. no. 10
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on Fault Diagnosis of Highway Bi-LSTM Based on Attention Mechanism
Autorzy:
Li, Xueyi
Su, Kaiyu
He, Qiushi
Wang, Xiangkai
Xie, Zhijie
Powiązania:
https://bibliotekanauki.pl/articles/24200832.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
fault diagnosis
Bi-LSTM
attention
highway
deep learning
Ball Bearing
Opis:
Deep groove ball bearings are widely used in rotary machinery. Accurate for bearing faults diagnosis is essential for equipment maintenance. For common depth learning methods, the feature extraction of inverse time domain signal direction and the attention to key features are usually ignored. Based on the long short term memory(LSTM) network, this study proposes an attention-based highway bidirectional long short term memory (AHBi-LSTM) network for fault diagnosis based on the raw vibration signal. By increasing the Attention mechanism and Highway, the ability of the network to extract features is increased. The bidirectional LSTM network simultaneously extracts the raw vibration signal in positive and inverse time-domains to better extract the fault features. Six deep groove ball bearings with different health conditions were used to validate the AHBi-LSTM method in an experiment. The results showed that the accuracy of the proposed method for bearing fault diagnosis was over 98%, which was 8.66% higher than that of the LSTM model. The AHBi-LSTM model is also better than other relevant models for bearing fault diagnosis.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 2; art. no. 162937
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aircraft Bleed Air System Fault Prediction based on Encoder-Decoder with Attention Mechanism
Autorzy:
Su, Siyu
Sun, Youchao
Peng, Chong
Wang, Yifan
Powiązania:
https://bibliotekanauki.pl/articles/27312776.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
bleed air system
fault prediction
attention mechanism
deep learning
EWMA control chart
Opis:
The engine bleed air system (BAS) is one of the important systems for civil aircraft, and fault prediction of BAS is necessary to improve aircraft safety and the operator's profit. A dual-stage two-phase attention-based encoder-decoder (DSTP-ED) prediction model is proposed for BAS normal state estimation. Unlike traditional ED networks, the DSTP-ED combines spatial and temporal attention to better capture the spatiotemporal relationships to achieve higher prediction accuracy. Five data-driven algorithms, autoregressive integrated moving average (ARIMA), support vector regression (SVR), long short-term memory (LSTM), ED, and DSTP-ED, are applied to build prediction models for BAS. The comparison experiments show that the DSTP-ED model outperforms the other four data-driven models. An exponentially weighted moving average (EWMA) control chart is used as the evaluation criterion for the BAS failure warning. An empirical study based on Quick Access Recorder (QAR) data from Airbus A320 series aircraft demonstrates that the proposed method can effectively predict failures.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 3; art. no. 167792
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault diagnosis of machines operating in variable conditions using artificial neural network not requiring training data from a faulty machine
Autorzy:
Pawlik, Paweł
Kania, Konrad
Przysucha, Bartosz
Powiązania:
https://bibliotekanauki.pl/articles/27312778.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
fault diagnosis
vibroacoustic diagnostics
deep learning
neural networks
maintenance of technical systems
Opis:
The fault diagnosis for maintenance of machines operating in variable conditions requires special dedicated methods. Variable load or temperature conditions affect the vibration signal values. The article presents a new approach to diagnosing rotating machines using an artificial neural network, the training of which does not require data from the damaged machine. This is a new approach not previously found in the literature. Until now, neural networks have been used for machine diagnosis in the form of classifiers, where data from individual faults were required. A new diagnostic parameter rDPNS (Relative Differences Product of Network Statistics) as a function of the machine's shaft order was proposed as a kind of new order spectrum independent of the machine's operating conditions. The presented work analyses the use of the proposed method to diagnose misalignment and unbalance. The results of an experiment carried out in the laboratory demonstrated the effectiveness of the proposed method.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 3; art. no. 168109
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predictive modelling of turbofan engine components condition using machine and deep learning methods
Autorzy:
Matuszczak, Michał
Żbikowski, Mateusz
Teodorczyk, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1841686.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability
prognostics
deep learning
machine learning
gas turbine
turbofan engine
neural network
condition-based maintenance
Opis:
The article proposes an approach based on deep and machine learning models to predict a component failure as an enhancement of condition based maintenance scheme of a turbofan engine and reviews currently used prognostics approaches in the aviation industry. Component degradation scale representing its life consumption is proposed and such collected condition data are combined with engines sensors and environmental data. With use of data manipulation techniques, a framework for models training is created and models' hyperparameters obtained through Bayesian optimization. Models predict the continuous variable representing condition based on the input. Best performed model is identified by detemining its score on the holdout set. Deep learning models achieved 0.71 MSE score (ensemble meta-model of neural networks) and outperformed significantly machine learning models with their best score at 1.75. The deep learning models shown their feasibility to predict the component condition within less than 1 unit of the error in the rank scale.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 2; 359-370
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Remaining useful life prediction with insufficient degradation data based on deep learning approach
Autorzy:
Lyu, Yi
Jiang, Yijie
Zhang, Qichen
Chen, Ci
Powiązania:
https://bibliotekanauki.pl/articles/2038109.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
deep learning
remaining useful life
degradation data
data amplification
cycle-consistent generative adversarial network
Opis:
Remaining useful life (RUL) prediction plays a crucial role in decision-making in conditionbased maintenance for preventing catastrophic field failure. For degradation-failed products, the data of performance deterioration process are the key for lifetime estimation. Deep learning has been proved to have excellent performance in RUL prediction given that the degradation data are sufficiently large. However, in some applications, the degradation data are insufficient, under which how to improve the prediction accuracy is yet a challenging problem. To tackle such a challenge, we propose a novel deep learning-based RUL prediction framework by amplifying the degradation dataset. Specifically, we leverage the cycle-consistent generative adversarial network to generate the synthetic data, based on which the original degradation dataset is amplified so that the data characteristics hidden in the sample space could be captured. Moreover, the sliding time window strategy and deep bidirectional long short-term memory network are employed to complete the RUL prediction framework. We show the effectiveness of the proposed method by running it on the turbine engine data set from the National Aeronautics and Space Administration. The comparative experiments show that our method outperforms a case without the use of the synthetically generated data.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 4; 745-756
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent fault diagnosis of rolling bearings based on continuous wavelet transform-multiscale feature fusion and improved channel attention mechanism
Autorzy:
Zhang, Jiqiang
Kong, Xiangwei
Cheng, Liu
Qi, Haochen
Yu, Mingzhu
Powiązania:
https://bibliotekanauki.pl/articles/24200817.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
deep learning
continuous wavelet transform
improved channel attention mechanism
multi-conditions
convolutional neural network
Opis:
Accurate fault diagnosis is critical to operating rotating machinery safely and efficiently. Traditional fault information description methods rely on experts to extract statistical features, which inevitably leads to the problem of information loss. As a result, this paper proposes an intelligent fault diagnosis of rolling bearings based on a continuous wavelet transform(CWT)-multiscale feature fusion and an improved channel attention mechanism. Different from traditional CNNs, CWT can convert the 1-D signals into 2-D images, and extract the wavelet power spectrum, which is conducive to model recognition. In this case, the multiscale feature fusion was implemented by the parallel 2-D convolutional neural networks to accomplish deeper feature fusion. Meanwhile, the channel attention mechanism is improved by converting from compressed to extended ways in the excitation block to better obtain the evaluation score of the channel. The proposed model has been validated using two bearing datasets, and the results show that it has excellent accuracy compared to existing methods.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 1; art. no. 16
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Maintenance of industrial reactors supported by deep learning driven ultrasound tomography
Eksploatacja reaktorów przemysłowych ze wspomaganiem tomografii ultradźwiękowej i algorytmów głębokiego uczenia
Autorzy:
Kłosowski, Grzegorz
Rymarczyk, Tomasz
Kania, Konrad
Świć, Antoni
Cieplak, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/301735.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
rekonstrukcja obrazu
deep learning
inverse problem
ultrasound tomography
image reconstruction
process tomography
uczenie głębokie
problem odwrotny
tomografia ultradźwiękowa
tomografia procesowa
Opis:
Monitoring of industrial processes is an important element ensuring the proper maintenance of equipment and high level of processes reliability. The presented research concerns the application of the deep learning method in the field of ultrasound tomography (UST). A novel algorithm that uses simultaneously multiple classification convolutional neural networks (CNNs) to generate monochrome 2D images was developed. In order to meet a compromise between the number of the networks and the number of all possible outcomes of a single network, it was proposed to divide the output image into 4-pixel clusters. Therefore, the number of required CNNs has been reduced fourfold and there are 16 distinct outcomes from single network. The new algorithm was first verified using simulation data and then tested on real data. The accuracy of image reconstruction exceeded 95%. The results obtained by using the new CNN clustered algorithm were compared with five popular machine learning algorithms: shallow Artificial Neural Network, Linear Support Vector Machine, Classification Tree, Medium k-Nearest Neighbor classification and Naive Bayes. Based on this comparison, it was found that the newly developed method of multiple convolutional neural networks (MCNN) generates the highest quality images.
Monitorowanie procesów przemysłowych jest ważnym elementem zapewniającym właściwą eksploatację urządzeń i wysoki poziom niezawodności procesów. Prezentowane badania dotyczą zastosowania metod głębokiego uczenia w obszarze eksploatacji zbiornikowych reaktorów przemysłowych. W procesach przemysłowych opartych na reakcjach chemicznych zachodzących wewnątrz procesowej tomografii ultradźwiękowej (UST). Opracowano nowatorski algorytm wykorzystujący jednocześnie wiele klasyfikacyjnych splotowych sieci neuronowych (CNN) do generowania monochromatycznych obrazów 2D. Aby osiągnąć kompromis między liczbą sieci a liczbą wszystkich możliwych wyników pojedynczej sieci, zaproponowano podział obrazu wyjściowego na klastry 4-pikselowe. W związku z tym liczba wymaganych CNN została czterokrotnie zmniejszona i istnieje 16 różnych wyników z jednej sieci. Nowy algorytm został najpierw zweryfikowany przy użyciu danych symulacyjnych, a następnie przetestowany na danych rzeczywistych. Dokładność rekonstrukcji obrazu przekroczyła 95%. Wyniki uzyskane przy użyciu nowego algorytmu klastrowego CNN zostały porównane z pięcioma popularnymi algorytmami uczenia maszynowego: płytką sztuczną siecią neuronową, maszyną liniowego wektora wsparcia, drzewem klasyfikacji, klasyfikacją średniego k-najbliższego sąsiada i naiwnym Bayesem. Na podstawie tego porównania stwierdzono, że nowo opracowana metoda wielu splotowych sieci neuronowych (MCNN) generuje obrazy o najwyższej jakości.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 1; 138-147
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies