Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "the norm" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Valdivia compacta and equivalent norms
Autorzy:
Kalenda, Ondřej
Powiązania:
https://bibliotekanauki.pl/articles/1206143.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Corson compact space
Valdivia compact space
projectional resolution of the identity
countably 1-norming Markushevich basis
equivalent norm
Opis:
We prove that the dual unit ball of a Banach space X is a Corson compactum provided that the dual unit ball with respect to every equivalent norm on X is a Valdivia compactum. As a corollary we show that the dual unit ball of a Banach space X of density $ℵ_1$ is Corson if (and only if) X has a projectional resolution of the identity with respect to every equivalent norm. These results answer questions asked by M. Fabian, G. Godefroy and V. Zizler and yield a converse to Amir-Lindenstrauss' theorem.
Źródło:
Studia Mathematica; 2000, 138, 2; 179-191
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the uniform convergence and L¹-convergence of double Walsh-Fourier series
Autorzy:
Móricz, Ferenc
Powiązania:
https://bibliotekanauki.pl/articles/1293178.pdf
Data publikacji:
1992
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Walsh-Paley system
W-continuity
moduli of continuity and smoothness
bounded variation in the sense of Hardy and Krause
generalized bounded variation
complementary functions in the sense of W. H. Young
rectangular partial sum
Dirichlet kernel
convergence in $L^p$-norm
uniform convergence Salem's test
Dini-Lipschitz test
Dirichlet-Jordan test
Opis:
In 1970 C. W. Onneweer formulated a sufficient condition for a periodic W-continuous function to have a Walsh-Fourier series which converges uniformly to the function. In this paper we extend his results from single to double Walsh-Fourier series in a more general setting. We study the convergence of rectangular partial sums in $L^p$-norm for some 1 ≤ p ≤ ∞ over the unit square [0,1) × [0,1). In case p = ∞, by $L^p$ we mean $C_W$, the collection of uniformly W-continuous functions f(x, y), endowed with the supremum norm. As special cases, we obtain the extensions of the Dini-Lipschitz test and the Dirichlet-Jordan test for double Walsh-Fourier series.
Źródło:
Studia Mathematica; 1992, 102, 3; 225-237
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the exponential Orlicz norms of stopped Brownian motion
Autorzy:
Peškir, Goran
Powiązania:
https://bibliotekanauki.pl/articles/1288072.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Brownian motion (Wiener process)
stopping time
exponential Young function
exponential Orlicz norm
Doob's maximal inequality for martingales
Burkholder-Gundy's inequality
Davis' best constants
Hermite polynomial
continuous (local) martingale
Ito's integral
the quadratic variation process
time change (of Brownian motion)
Kahane-Khinchin's inequalities
Opis:
Necessary and sufficient conditions are found for the exponential Orlicz norm (generated by $ψ_p(x) = exp(|x|^p)-1$ with 0 < p ≤ 2) of $max_{0≤t≤τ}|B_t|$ or $|B_τ|$ to be finite, where $B = (B_t)_{t≥0}$ is a standard Brownian motion and τ is a stopping time for B. The conditions are in terms of the moments of the stopping time τ. For instance, we find that $∥max_{0≤t≤τ}|B_t|∥_{ψ_1} < ∞$ as soon as $E(τ^{k}) = O(C^{k}k^{k})$ for some constant C > 0 as k → ∞ (or equivalently $∥τ∥_{ψ_1} < ∞$). In particular, if τ ∼ Exp(λ) or $|N(0,σ^2)|$ then the last condition is satisfied, and we obtain $∥max_{0≤t≤τ}|B_t|∥_{ψ_1} ≤ K √{E(τ)}$ with some universal constant K > 0. Moreover, this inequality remains valid for any class of stopping times τ for B satisfying $E(τ^{k}) ≤ C(Eτ)^{k}k^{k}$ for all k ≥ 1 with some fixed constant C > 0. The method of proof relies upon Taylor expansion, Burkholder-Gundy's inequality, best constants in Doob's maximal inequality, Davis' best constants in the $L^p$-inequalities for stopped Brownian motion, and estimates of the smallest and largest positive zero of Hermite polynomials. The results extend to the case of any continuous local martingale (by applying the time change method of Dubins and Schwarz).
Źródło:
Studia Mathematica; 1995-1996, 117, 3; 253-273
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies