Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "functor" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
A Carlson type inequality with blocks and interpolation
Autorzy:
Ya Kruglyak, Natan
Maligranda, Lech
Persson, Lars
Powiązania:
https://bibliotekanauki.pl/articles/1292922.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
concavity
Carlson's inequality
blocks
interpolation
Peetre's interpolation functor
Calderón-Lozanovskiǐ construction
Opis:
An inequality, which generalizes and unifies some recently proved Carlson type inequalities, is proved. The inequality contains a certain number of "blocks" and it is shown that these blocks are, in a sense, optimal and cannot be removed or essentially changed. The proof is based on a special equivalent representation of a concave function (see [6, pp. 320-325]). Our Carlson type inequality is used to characterize Peetre's interpolation functor $⟨⟩_{φ}$ (see [26]) and its Gagliardo closure on couples of functional Banach lattices in terms of the Calderón-Lozanovskiǐ construction. Our interest in this functor is inspired by the fact that if $φ = t^{θ}(0 < θ < 1)$, then, on couples of Banach lattices and their retracts, it coincides with the complex method (see [20], [27]) and, thus, it may be regarded as a "real version" of the complex method.
Źródło:
Studia Mathematica; 1993, 104, 2; 161-180
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Acyclic inductive spectra of Fréchet spaces
Autorzy:
Wengenroth, Jochen
Powiązania:
https://bibliotekanauki.pl/articles/1287317.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
inductive and projective limits
acyclicity
derived projective limit functor
Opis:
We provide new characterizations of acyclic inductive spectra of Fréchet spaces which improve the classical theorem of Palamodov and Retakh. It turns out that acyclicity, sequential retractivity (defined by Floret) and further strong regularity conditions (introduced e.g. by Bierstedt and Meise) are all equivalent. This solves a problem that was folklore since around 1970. For inductive limits of Fréchet-Montel spaces we obtain even stronger results, in particular, Grothendieck's problem whether regular (LF)-spaces are complete has a positive solution in this case and we show that even the weakest regularity conditions already imply acyclicity. One of the main benefits from our results is an improvement in the theory of projective spectra of (DFM)-spaces. We prove the missing implication in a theorem of Vogt and thus obtain evaluable conditions for vanishing of the derived projective limit functor which have direct applications to classical problems of analysis like surjectivity of partial differential operators on various classes of ultradifferentiable functions (as was explained e.g. by Braun, Meise and Vogt).
Źródło:
Studia Mathematica; 1996, 120, 3; 247-258
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Continuity of projections of natural bundles
Autorzy:
Mikulski, Włodzimierz
Powiązania:
https://bibliotekanauki.pl/articles/1312025.pdf
Data publikacji:
1992
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
natural bundle
quasi-natural bundle
regular quasi-natural bundle
locally determined associated space
quasi-prolongation functor
Opis:
This paper is a contribution to the axiomatic approach to geometric objects. A collection of a manifold M, a topological space N, a group homomorphism E: Diff(M) → Homeo(N) and a function π: N → M is called a quasi-natural bundle if (1) π ∘ E(f) = f ∘ π for every f ∈ Diff(M) and (2) if f,g ∈ Diff(M) are two diffeomorphisms such that f|U = g|U for some open subset U of M, then E(f)|π^{-1}(U) = E(g)|π^{-1}(U). We give conditions which ensure that π: N → M is continuous. In particular, if (M,N,E,π) is a quasi-natural bundle with N Hausdorff, then π is continuous. Using this result, we classify (quasi) prolongation functors with compact fibres.
Źródło:
Annales Polonici Mathematici; 1992, 57, 2; 105-120
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Standard exact projective resolutions relative to a countable class of Fréchet spaces
Autorzy:
Domański, P.
Krone, J.
Vogt, D.
Powiązania:
https://bibliotekanauki.pl/articles/1220055.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Fréchet spaces
Köthe sequence spaces
splitting of short exact sequences
nuclear spaces
Schwartz spaces
quasinormable spaces
functor $Ext^1$
projective spaces
projective resolution
Opis:
We will show that for each sequence of quasinormable Fréchet spaces $(E_n)_ℕ$ there is a Köthe space λ such that $Ext^1(λ(A), λ(A) = Ext^1 (λ(A), E_n)=0$ and there are exact sequences of the form $... → λ(A) → λ(A) → λ(A) → λ(A) → {E_n} → 0$. If, for a fixed ℕ, $E_n$ is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form $0 → λ(A) → λ(A) → {E_n} → 0$. The result has some applications in the theory of the functor $Ext^1$ in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.
Źródło:
Studia Mathematica; 1997, 123, 3; 275-290
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probability measure functors preserving infinite-dimensional spaces
Autorzy:
Nguyen, Nhu
Sakai, Katsuro
Powiązania:
https://bibliotekanauki.pl/articles/966867.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
pseudo-interior
probability measure functor
$l_{2}$
$l_{2} × l_{2}^{f}$
radial-interior
hyperspace
σ
G-symmetric power
$l_{2}^{f}$
support
$(l_{2}^{f})^{ω}$
the Hilbert cube
Źródło:
Colloquium Mathematicum; 1996, 70, 2; 291-304
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies