Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "finite-dimensional maps" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Bing maps and finite-dimensional maps
Autorzy:
Levin, Michael
Powiązania:
https://bibliotekanauki.pl/articles/1205475.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
finite-dimensional maps
hereditarily indecomposable continua
Opis:
Let X and Y be compacta and let f:X → Y be a k-dimensional map. In [5] Pasynkov stated that if Y is finite-dimensional then there exists a map $g : X → \mathbb{I}^k$ such that dim (f × g) = 0. The problem that we deal with in this note is whether or not the restriction on the dimension of Y in the Pasynkov theorem can be omitted. This problem is still open.
 Without assuming that Y is finite-dimensional Sternfeld [6] proved that there exists a map $g : X → \mathbb{I}^k$ such that dim (f × g) = 1. We improve this result of Sternfeld showing that there exists a map $g : X → mathbb{I}^{k+1}$ such that dim (f × g) =0. The last result is generalized to maps f with weakly infinite-dimensional fibers.
 Our proofs are based on so-called Bing maps. A compactum is said to be a Bing compactum if its compact connected subsets are all hereditarily indecomposable, and a map is said to be a Bing map if all its fibers are Bing compacta. Bing maps on finite-dimensional compacta were constructed by Brown [2]. We construct Bing maps for arbitrary compacta. Namely, we prove that for a compactum X the set of all Bing maps from X to $\mathbb{I}$ is a dense $G_δ$-subset of $C(X, \mathbb{I})$.
Źródło:
Fundamenta Mathematicae; 1996, 151, 1; 47-52
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies