- Tytuł:
- Mosers Inequality for a class of integral operators
- Autorzy:
-
Holland, Finbarr
Walsh, David - Powiązania:
- https://bibliotekanauki.pl/articles/1289652.pdf
- Data publikacji:
- 1995
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
Moser's Inequality
integral operator
distribution function - Opis:
- Let 1 < p < ∞, q = p/(p-1) and for $f ∈ L^p(0,∞)$ define $F(x) = (1/x) ʃ_0^x f(t)dt$, x > 0. Moser's Inequality states that there is a constant $C_p$ such that $sup_{a≤1} sup_{f∈B_{p}} ʃ_{0}^{∞} exp[ax^{q}|F(x)|^{q} - x]dx= C_p$ where $B_p$ is the unit ball of $L^p$. Moreover, the value a = 1 is sharp. We observe that $F = K_1$ f where the integral operator $K_1$ has a simple kernel K. We consider the question of for what kernels K(t,x), 0 ≤ t, x < ∞, this result can be extended, and proceed to discuss this when K is non-negative and homogeneous of degree -1. A sufficient condition on K is found for the analogue of Moser's Inequality to hold. An internal constant ψ, the counterpart of the constant a, arises naturally. We give a condition on K that ψ be sharp. Some applications are discussed.
- Źródło:
-
Studia Mathematica; 1995, 113, 2; 141-168
0039-3223 - Pojawia się w:
- Studia Mathematica
- Dostawca treści:
- Biblioteka Nauki