Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lie's groups" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Continuous transformation groups on spaces
Autorzy:
Spallek, K.
Powiązania:
https://bibliotekanauki.pl/articles/1312663.pdf
Data publikacji:
1991
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
differentiable spaces
differentiable groups
Lie groups
transformation groups
formal groups
Opis:
A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which satisfies some mild geometric property) is in fact a Lie group and operates differentiably on X. Special cases have already been known: X a manifold (Montgomery-Zippin), X a reduced (Kerner) or nonreduced (W. Kaup) complex space. The proof requires some analysis on arbitrary differentiable spaces. There one has for example in general no finitely generated ideals as in the case of complex spaces. As a corollary one obtains: The reduction of a locally compact differentiable group is a Lie group (by different methods also proved by Pasternak-Winiarski). It was already proved before that any differentiable group can be uniquely extended to a smallest locally compact differentiable group (as a dense subgroup). The study of the nonreduced parts of differentiable groups remains to be completed.
Źródło:
Annales Polonici Mathematici; 1991, 55, 1; 301-320
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polyhedral summability of multiple Fourier series (and explicit formulas for Dirichlet kernels on $^n$ and on compact Lie groups)
Autorzy:
Travaglini, Giancarlo
Powiązania:
https://bibliotekanauki.pl/articles/967329.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
polyhedral Dirichlet kernels
multiple Fourier series
Fourier series on compact Lie groups
Lebesgue constants
Opis:
We study polyhedral Dirichlet kernels on the n-dimensional torus and we write a fairly simple formula which extends the one-dimensional identity $∑_{j=-N}^N e^{ijt} = sin((N+(1/2))t) / sin((1/2)t)$. We prove sharp results for the Lebesgue constants and for the pointwise boundedness of polyhedral Dirichlet kernels; we apply our results and methods to approximation theory, to more general summability methods and to Fourier series on compact Lie groups, where we write an asymptotic formula for the Dirichlet kernels.
Źródło:
Colloquium Mathematicum; 1993, 65, 1; 103-116
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Varieties of topological groups, Lie groups and SIN-groups
Autorzy:
Hofmann, Karl
Morris, Sidney
Stroppel, Markus
Powiązania:
https://bibliotekanauki.pl/articles/966844.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
pro-Lie group
varieties of topological groups
IN-group
SIN-group
Lie group
Opis:
In this paper we answer three open problems on varieties of topological groups by invoking Lie group theory. We also reprove in the present context that locally compact groups with arbitrarily small invariant identity neighborhoods can be approximated by Lie groups
Źródło:
Colloquium Mathematicum; 1996, 70, 2; 151-163
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Topological realization of a family of pseudoreflection groups
Autorzy:
Notbohm, Dietrich
Powiązania:
https://bibliotekanauki.pl/articles/1205400.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
pseudoreflection groups
p-compact group
classifying spaces
compact Lie group
polynomial algebra
Opis:
We are interested in a topological realization of a family of pseudoreflection groups $G ⊂ GL(n,{\sym F}_p )$; i.e. we are looking for topological spaces whose mod-p cohomology is isomorphic to the ring of invariants ${\sym F}_p [x_1,..., x_n]^G$. Spaces of this type give partial answers to a problem of Steenrod, namely which polynomial algebras over ${\sym F}_p $ can appear as the mod-p cohomology of a space. The family under consideration is given by pseudoreflection groups which are subgroups of the wreath product $ℤ/q ≀Σ_n$ where q divides p - 1 and where p is odd. Let G be such a subgroup acting on the polynomial algebra $A:= {\sym F}_p [x_1,..., x_n]$. We show that there exists a space X such that $H*(X;{\sym F}_p )≅ A^G$ which is again a polynomial algebra. Examples of polynomial algebras of this form are given by the mod-p cohomology of the classifying spaces of special orthogonal groups or of symplectic groups.
 The construction uses products of classifying spaces of unitary groups as building blocks which are glued together via information encoded in a full subcategory of the orbit category of the group G. Using this construction we also show that the homotopy type of the p-adic completion of these spaces is completely determined by the mod-p cohomology considered as an algebra over the Steenrod algebra. Moreover, we calculate the set of homotopy classes of self maps of the completed spaces.
Źródło:
Fundamenta Mathematicae; 1998, 155, 1; 1-31
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies