Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Steprans, Juris" wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Sums of Darboux and continuous functions
Autorzy:
Steprans, Juris
Powiązania:
https://bibliotekanauki.pl/articles/1208413.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
It is shown that for every Darboux function F there is a non-constant continuous function f such that F + f is still Darboux. It is shown to be consistent - the model used is iterated Sacks forcing - that for every Darboux function F there is a nowhere constant continuous function f such that F + f is still Darboux. This answers questions raised in [5] where it is shown that in various models of set theory there are universally bad Darboux functions, Darboux functions whose sum with any nowhere constant, continuous function fails to be Darboux.
Źródło:
Fundamenta Mathematicae; 1994-1995, 146, 2; 107-120
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decomposing Baire class 1 functions into continuous functions
Autorzy:
Shelah, Saharon
Steprans, Juris
Powiązania:
https://bibliotekanauki.pl/articles/1208484.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
It is shown to be consistent that every function of first Baire class can be decomposed into $ℵ_1$ continuous functions yet the least cardinal of a dominating family in $^ωω$ is $ℵ_2$. The model used in the one obtained by adding $ω_2$ Miller reals to a model of the Continuum Hypothesis.
Źródło:
Fundamenta Mathematicae; 1994, 145, 2; 171-180
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
$G_δ$-sets in topological spaces and games
Autorzy:
Winfried, Just
Sheepers, Marion
Steprans, Juris
Szeptycki, Paul
Powiązania:
https://bibliotekanauki.pl/articles/1205436.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
game
strategy
Lusin set, Sierpiński set, Rothberger's property C"
concentrated set
λ-set, σ-set
perfectly meager set, Q-set
$s_0$-set
$A_1$-set
$A_2$-set
$A_3$-set
${\ninegot b}$
${\ninegot d}$
Opis:
Players ONE and TWO play the following game: In the nth inning ONE chooses a set $O_n$ from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset $T_n$ of X. The players must obey the rule that $O_n ⊆ O_{n+1} ⊆ T_{n+1} ⊆ T_n$ for each n. TWO wins if the intersection of TWO's sets is equal to the union of ONE's sets. If ONE has no winning strategy, then each element of ℱ is a $G_δ$-set. To what extent is the converse true? We show that:
 (A) For ℱ the collection of countable subsets of X:
  1. There are subsets of the real line for which neither player has a winning strategy in this game.
  2. The statement "If X is a set of real numbers, then ONE does not have a winning strategy if, and only if, every countable subset of X is a $G_δ$-set" is independent of the axioms of classical mathematics.
  3. There are spaces whose countable subsets are $G_δ$-sets, and yet ONE has a winning strategy in this game.
  4. For a hereditarily Lindelöf space X, TWO has a winning strategy if, and only if, X is countable.
 (B) For ℱ the collection of $G_σ$-subsets of a subset X of the real line the determinacy of this game is independent of ZFC.
Źródło:
Fundamenta Mathematicae; 1997, 153, 1; 41-58
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies