- Tytuł:
- Non-Leibniz algebras with logarithms do not have the trigonometric identity
- Autorzy:
- Przeworska-Rolewicz, D.
- Powiązania:
- https://bibliotekanauki.pl/articles/1207627.pdf
- Data publikacji:
- 2000
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
sine mapping
algebra with unit
algebraic analysis
logarithmic mapping
Leibniz condition
cosine mapping - Opis:
- Let X be a Leibniz algebra with unit e, i.e. an algebra with a right invertible linear operator D satisfying the Leibniz condition: D(xy) = xDy + (Dx)y for x,y belonging to the domain of D. If logarithmic mappings exist in X, then cosine and sine elements C(x) and S(x) defined by means of antilogarithmic mappings satisfy the Trigonometric Identity, i.e. $[C(x)]^2 + [S(x)]^2 = e$ whenever x belongs to the domain of these mappings. The following question arises: Do there exist non-Leibniz algebras with logarithms such that the Trigonometric Identity is satisfied? We shall show that in non-Leibniz algebras with logarithms the Trigonometric Identity does not exist. This means that the above question has a negative answer, i.e. the Leibniz condition in algebras with logarithms is a necessary and sufficient condition for the Trigonometric Identity to hold.
- Źródło:
-
Banach Center Publications; 2000, 53, 1; 177-189
0137-6934 - Pojawia się w:
- Banach Center Publications
- Dostawca treści:
- Biblioteka Nauki