Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "L.N." wg kryterium: Wszystkie pola


Tytuł:
Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q)
Autorzy:
Godoy, T.
Saal, L.
Powiązania:
https://bibliotekanauki.pl/articles/1396016.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
Let $H_{n}$ be the (2n+1)-dimensional Heisenberg group, let p,q be two non-negative integers satisfying p+q=n and let G be the semidirect product of U(p,q) and $H_{n}$. So $L^{2}(H_{n})$ has a natural structure of G-module. We obtain a decomposition of $L^{2}(H_{n})$ as a direct integral of irreducible representations of G. On the other hand, we give an explicit description of the joint spectrum σ(L,iT) in $L^{2}(H_{n})$ where $L=\sum_{j=1}^{p} (X_{j}^{2}+Y_{j}^{2}) - \sum_{j=p+1}^{n} (X_{j}^{2}+Y_{j}^{2})$, and where ${X_{1},Y_{1},...,X_{n},Y_{n},T}$ denotes the standard basis of the Lie algebra of $H_{n}$. Finally, we obtain a spectral characterization of the bounded operators on $L^{2}(H_{n})$ that commute with the action of G.
Źródło:
Colloquium Mathematicum; 2000, 86, 2; 177-187
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On p-dependent local spectral properties of certain linear differential operators in $L^{p}(ℝ^{N})
Autorzy:
Albrecht, E.
Ricker, W.
Powiązania:
https://bibliotekanauki.pl/articles/1218364.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
The aim is to investigate certain spectral properties, such as decomposability, the spectral mapping property and the Lyubich-Matsaev property, for linear differential operators with constant coefficients ( and more general Fourier multiplier operators) acting in $L^p(ℝ^N)$. The criteria developed for such operators are quite general and p-dependent, i.e. they hold for a range of p in an interval about 2 (which is typically not (1,∞)). The main idea is to construct appropriate functional calculi: this is achieved via a combination of methods from the theory of Fourier multipliers and local spectral theory.
Źródło:
Studia Mathematica; 1998, 130, 1; 23-52
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies