Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Class Composition" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Order bounded composition operators on the Hardy spaces and the Nevanlinna class
Autorzy:
Jaoua, Nizar
Powiązania:
https://bibliotekanauki.pl/articles/1217094.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
composition operators
order bounded maps
Hardy spaces
Nevanlinna class
radial limit
moment sequences and analytic moment sequences
Opis:
We study the order boundedness of composition operators induced by holomorphic self-maps of the open unit disc D. We consider these operators first on the Hardy spaces $H^p$ 0 < p < ∞ and then on the Nevanlinna class N. Given a non-negative increasing function h on [0,∞[, a composition operator is said to be X,L_h-order bounded (we write (X,L_h)-ob) with $X = H^p$ or X = N if its composition with the map f ↦ f*, where f* denotes the radial limit of f, is order bounded from X into $L_h$. We give a complete characterization and a family of examples in both cases. On the other hand, we show that the ($N,log^{+}L$)-ob composition operators are exactly those which are Hilbert-Schmidt on $H^2$. We also prove that the ($N,L^q$)-ob composition operators are exactly those which are compact from N into $H^q$.
Źródło:
Studia Mathematica; 1999, 134, 1; 35-55
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies