Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "odpady powęglowe" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Management of hard coal mining and processing wastes in Poland
Gospodarka odpadami z górnictwa i przeróbki węgla kamiennego w Polsce
Autorzy:
Galos, K.
Szlugaj, J.
Powiązania:
https://bibliotekanauki.pl/articles/215810.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
odpady powęglowe
kruszywa
odzysk węgla
Górny Śląsk
coal waste
aggregates
coal recovery
Upper Silesia
Opis:
Mining and processing wastes comprise the largest group of industrial wastes generated and deposited in Poland. Among these, wastes from hard coal mining and processing traditionally constitute the most important group, currently generated at a level of 29–33 million Mg per year, with approx. 85% being utilised. Hard coal wastes are divided into two main groups – mining wastes (up to 20%) coming from preparatory and productive mining works; and processing wastes categorized as coarse-grained wastes from dense, medium gravity separation, fine-grained wastes from jiggers, and very fine-grained flotation wastes. Coarse-grained wastes (from both mining and processing) are the most economically useful. The main directions of their application are production of aggregates for engineering and road construction, production of cement or building ceramics, recovery of coal, or use as backfilling material. For aggregates production, two types of such wastes are used – raw coal wastes and self-burnt coal shale. The most important producer of aggregates from raw coal wastes is Haldex Co. with four processing plants (also delivering coal shale for cement or ceramics and recovered coal) and two crushing sieving units. Its total aggregates production exceeds 3 million Mg per year. Production of shale gravellite aggregates from self-burnt coal shale is carried out by a dozen or so small companies, with total production over 0.5 million Mg per year. Raw coal shale finds use in building ceramics and cement clinker manufacturing (up to 0.3 million Mg per year). Coal recovery, mostly in Haldex Co. plants, currently exceeds 0.15 million Mg per year, while granulated coal mud production in three plants of Haldex and two plants of Tauron Wydobycie can be a few times higher, ca. 0.6–0.7 million Mg per year. In the coming years, the production of shale gravellite aggregates and consumption of raw coal shale in cement and ceramics are not expected to rise. Further development is possible in the case of coal recovery accompanied by production of aggregates from raw coal wastes, though not all obtained aggregates will find use – not even for road embankments or river embankments in the immediate vicinity.
Odpady z górnictwa i przeróbki stanowią największą grupę odpadów przemysłowych wytwarzanych i deponowanych w Polsce. Odpady z górnictwa i przeróbki węgla kamiennego tradycyjnie stanowią najważniejszą ich grupę. Obecnie są one wytwarzane w ilościach rzędu 29–33 mln Mg/r, przy wykorzystaniu gospodarczym rzędu 85%. Odpady powęglowe dzieli się na dwie główne grupy: odpady górnicze (do 20%) z górniczych prac przygotowawczych i udostępniających, oraz odpady przeróbcze: gruboziarniste ze wzbogacania w zawiesinowych cieczach ciężkich, drobnoziarniste ze wzbogacania w osadzarkach, bardzo drobnoziarniste odpady flotacyjne. Wykorzystywane gospodarczo są głównie odpady gruboziarniste (zarówno górnicze, jak i przeróbcze). Główne kierunki ich zastosowań to: produkcja kruszyw do prac inżynierskich i budowy dróg, produkcja cementu i ceramiki budowlanej, odzysk węgla, stosowanie jako materiału podsadzkowego. W przypadku produkcji kruszyw, stosowane są dwa rodzaje odpadów: odpady powęglowe surowe oraz samoczynnie wypalony łupek powęglowy. Najważniejszym producentem kruszyw z odpadów powęglowych surowych jest Haldex S.A. z czterema zakładami przeróbczymi (dostarczającymi także łupek powęglowy do produkcji cementu lub ceramiki budowlanej, a także odzyskiwany węgiel) oraz dwoma węzłami krusząco-sortującymi. Łączna produkcja kruszyw w zakładach Haldex S.A. przekracza 3 miliony Mg/r. Produkcja kruszyw łupkoporytowych z łupka wypalonego jest prowadzona przez kilkanaście małych firm na łącznym poziomie ponad 0,5 mln Mg/r. Surowy łupek powęglowy znajduje zastosowanie do produkcji cementu i ceramiki budowlanej w ilości do 0,3 mln Mg/r. Odzysk węgla, prowadzony głównie w zakładach Haldex S.A., obecnie przekracza 0,15 mln Mg/r, podczas gdy produkcja granulowanych mułów węglowych w trzech instalacjach Haldex S.A. i dwóch instalacjach Tauron Wydobycie jest prawdopodobnie nawet kilka razy większa rzędu 0,6–0,7 mln Mg/r. W najbliższych latach nie należy się spodziewać wzrostu produkcji kruszyw łupkoporytowych, a także zużycia łupka surowego do produkcji cementu i ceramiki budowlanej. Dalszy wzrost jest natomiast możliwy w przypadku odzysku węgla z prowadzoną równolegle produkcją kruszyw z surowych odpadów powęglowych. Tym niemniej nie należy się spodziewać, że wszystkie wytworzone na tej drodze kruszywa znajdą zastosowanie gospodarcze, nawet na nasypy drogowe i obwałowania rzek w bliskim sąsiedztwie zakładów.
Źródło:
Gospodarka Surowcami Mineralnymi; 2014, 30, 4; 51-63
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stateczność wałów przeciwpowodziowych z wbudowaną warstwą odpadów powęglowych w świetle obliczeń numerycznych
The stability of the flood embankment with a layer of coal mining wastes
Autorzy:
Pilecka, E.
Morman, J.
Powiązania:
https://bibliotekanauki.pl/articles/394592.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wały przeciwpowodziowe
odpady powęglowe
stateczność wałów przeciwpowodziowych
obliczenia numeryczne
flood embankment
coal mining wastes
slope stability analysis
Opis:
W artykule zaprezentowano analizę stateczności dla zmodernizowanego wału przeciwpowodziowego z wbudowaną warstwą materiałów odpadów powęglowych z Kopalni Węgla Kamiennego Piast. Dla przedstawionego przypadku prawego wału przeciwpowodziowego rzeki Małej Wisły, przeprowadzono analizę stateczności i przepływ wody w korpusie wału podczas maksymalnego spiętrzania wody na skarpie dowodnej. Do obliczeń numerycznych wykorzystano program bazujący na metodzie elementów skończonych (MES) MIDAS GTS NX. Współczynnik został wyznaczony metodą redukcji wytrzymałości na ścinanie (SRM) dla stanu początkowego (normalny układ obciążeń), podczas maksymalnego piętrzenia się wody powodziowej na skarpie odwodnej (wyjątkowy układ obciążeń) oraz dla korpusu wału nasączonego wodą po odpływie fali wezbraniowej. Uzyskane w obliczeniach wartości współczynnika pewności dla korpusu wału zostały odniesione do wytycznych z Rozporządzanie Ministra Środowiska z dnia 20 kwietnia 2007 r. w sprawie warunków technicznych, jakim powinny odpowiadać budowle hydrotechniczne i ich usytuowanie (Dz. U. 2007 Nr 86 poz. 579). Współczynnik pewności dla analizowanego wału przeciwpowodziowego podczas wyjątkowego układu obciążeń nie spełnia warunku stateczności, dlatego w pracy rozpatrzono możliwości poprawy stateczności wału podczas piętrzenia wody oraz jej odpływu. W tym celu za pomocą modelowania sprawdzono stateczność korpusu wału przeciwpowodziowego po zastosowaniu kolumn gruntowych z użyciem materiału antropogenicznego z kopalni KWK Piast u podnóża korpusu wału zarówno po stronie dowodnej, jak i odpowietrzanej. Dla wszystkich modeli zastosowano ten sam scenariusz obliczeniowy. Dzięki większej wodoprzepuszczalności materiału gruntowego zastosowanego w kolumnach gruntowych, została obniżona krzywa depresji wody w korpusie wału, co zapewniło stateczność wału podczas wezbrania wody.
The article presents an analysis of the stability of the modernized flood embankment with built layer of material coal mining wastes the Coal Mine “Piast”. For the present case, the Small Vistula River right flood embankment, an analysis of the stability and the flow of water in the body of the shaft during the maximum stacking water on a slope was conducted. A program based on the finite element method (FEM) MIDAS GTS NX was used for numerical calculations. The stability factor was determined by the reduction of shear strength (SRM) for the initial state (normal load), during the maximum damming the flood water on the upstream slope (special system load) and for the shaft body soaked with water after the outflow of the flood wave. The resulting calculation of the stability factor for the body of flood embankment were referred in the Regulation of the Minister of Environment of 20 April 2007 on the technical conditions to be met by hydraulic structures and their location (Journal of Laws 2007 No 86, item. 579). The stability factor for the analyzed flood embankment during the special system load does not satisfy the condition of stability. The article checked the possibility of improving the stability of the shaft during the impoundment of water and its outflow. Using the modeling checked the stability of the body of flood embankment after using columns of land with mining waste from the mine KWK “Piast” at the foot of the body of the shaft on both sides. We used the same scenario calculation for all the models. With more water permeability soil material used in the columns of ground, it was reduced depression curve of water in the body of flood embankment which ensured the stability embankment during flood water.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2016, 94; 173-184
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wymywanie arsenu z odpadów powęglowych: ocena metod badawczych
Leaching of arsenic from coal waste: evaluation of the analytical methods
Autorzy:
Makowska, D.
Świątek, K.
Wierońska, F.
Strugała, A.
Powiązania:
https://bibliotekanauki.pl/articles/394618.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
arsen
odpady powęglowe
wzbogacanie węgla
wymywanie metali ciężkich
arsenic
coal waste
coal enrichment
leaching of heavy metals
Opis:
Jednym z parametrów oceny zagrożenia wynikającego ze składowania lub gospodarczego wykorzystania odpadów powęglowych jest badanie wymywalności szkodliwych substancji, takich jak arsen i jego związki. Wymywalność zależy zarówno od warunków środowiskowych terenu składowania, jak również od samych właściwości materiału odpadowego. Istnieje szereg metod badania wymywalności, które pozwalają modelować określone warunki lub mierzą swoiste właściwości procesu wymywania. Badania przeprowadzone w ramach opracowania miały na celu porównanie dwóch metod o odmiennych założeniach stosowania. Badanie wymywalności arsenu z odpadu pochodzącego z procesu wzbogacania węgla kamiennego przeprowadzono zgodnie z polską normą PN-EN 12457 oraz amerykańską procedurą TCLP. Wyniki wymywalności uzyskane obiema metodami nie przekraczały granicznych wartości tego parametru, określonych w polskim prawie. Obie metody charakteryzowały się również dobrą powtarzalnością wyników. Zastosowanie roztworu kwasu octowego (metoda TCLP) spowodowało jednak trzykrotnie większe wymycie arsenu z badanego odpadu w porównaniu do zastosowania wody dejonizowanej jako cieczy wymywającej (metoda PN-EN 12457). Należałoby w związku z tym rozważyć stosowanie testów z użyciem kwasów organicznych w przypadku składowania odpadów wydobywczych z odpadami komunalnymi, gdyż wyniki testu podstawowego opartego na wymywaniu czystą wodą mogą być nieadekwatne do rzeczywistej wymywalność arsenu w takich warunkach środowiskowych.
The analysis of leaching behavior of harmful substances, such as arsenic, is one of the parameters of risk assessment resulting from the storage or economic use of coal waste. The leachability depends both on the environmental conditions of the storage area as well as on the properties of the waste material itself. There are a number of leaching tests that allow to model specific conditions or measure the specific properties of the leaching process. The conducted research aimed at comparing two methods with different application assumptions. The study of arsenic leaching from waste from the hard coal enrichment process was carried out in accordance with the Polish PN-EN 12457 standard and the US TCLP procedure. The leaching results obtained with both methods did not exceed the limit values of this parameter, defined in the Polish law. Both methods were also characterized by the good repeatability of the results. The use of an acetic acid solution (TCLP method) resulted in three times higher arsenic leaching from the examined waste compared to the use of deionized water as a leaching fluid (method PN-EN 12457). Therefore, the use of organic acid tests for mining waste intended for storage with municipal waste should be considered, as the results of the basic test based on clean water leaching may be inadequate to the actual leaching of arsenic under such environmental conditions.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2018, 105; 157-171
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies