Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wzbogacanie rud" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
A geometric approach to evaluating the results of Polish copper ores beneficiation
Geometryczna ocena wyników wzbogacania polskich rud miedzi
Autorzy:
Foszcz, D.
Niedoba, T.
Tumidajski, T.
Powiązania:
https://bibliotekanauki.pl/articles/216151.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wzbogacalność rudy miedzi
ruda miedzi
krzywa wzbogacalności
optymalne wzbogacanie
copper upgradeability
copper ore
upgrading curve
optimal beneficiation
Opis:
The separation or beneficiation processes are conducted in many devices and concern many various types of minerals and raw materials. The aim of conducting these processes is always to achieve the best possible results allowing as much of the useful component as possible to be obtained by maintaining reasonable costs of the process. Therefore, it is important to have the possibility to monitor the process effects and to have efficient tools to evaluate the course of it. Generally, the ore’s ability to partition into concentrate and tailings is called its efficiency, upgradeability etc. It can be said that there is no unambiguous measure of upgradeability and there are many factors in use which enable to evaluate it qualitatively. Among them are such commonly known parameters as: recovery, losses, yield, upgrading ratio and many others. They are based on three principal parameters that is the average content of the useful component α, the contents of this component in concentrate β and the contents of this component in tailings ϑ. For a given ore (assuming that α = constant), the multi-product separation results can be treated as points of a trajectory located on the surface of factor w in a three dimensional space (β, ϑ, w). The course of the trajectory depends on the ore petrographic and mineralogical properties preparation for the process. For these reasons, searching for optimal (potential) possibilities of the ore is relative, which is presented in the example of Halbich, Fuerstenau and Madej upgrading curves. Such curves are efficient tools to evaluate the course of a separation (beneficiation) process and each of their types allow the effects to be shown in different perspective. Apart from this, they allow also the optimal feed conditions to conduct a certain process with aim of achieving the expected results to be found. Furthermore, the effect of the ore preparation on the flotation results, on the sum of recoveries of the useful component in concentrate and residual recovery in tailings is presented in the paper. The results indicated that any additional contamination of concentrate should be taken into account during the organization of the flotation process. In this way, the results of fractionated flotation have much valuable information to establish the course of the process.
Procesy rozdziału czy wzbogacania prowadzone są za pomocą wielu typów urządzeń i dotyczą wielu różnorodnych minerałów i surowców. Celem prowadzenia tych procesów jest zawsze uzyskanie możliwie najlepszych wyników, które umożliwią uzysk tak dużej ilości składnika użytecznego, jak tylko jest to możliwe, przy utrzymaniu rozsądnych kosztów prowadzenia procesu. Zatem istotne jest, aby istniała możliwość monitorowania efektów procesu oraz aby dysponować efektywnymi narzędziami oceny jego przebiegu. Ogólnie, zdolność rudy do rozdziału na produkty, którymi są koncentrat i odpad nazywa się jego wzbogacalnością. Można powiedzieć, że nie istnieje jedna uniwersalna miara wzbogacalności, a w użyciu jest wiele wskaźników, które umożliwiają jej jakościową ocenę. Między nimi są tak powszechnie znane wskaźniki, jak uzysk, straty, wychód, wskaźnik wzbogacania oraz wiele innych. Bazują one na trzech głównych parametrach, którymi są średnia zawartość składnika użytecznego w nadawie α, zawartość tego składnika w koncentracie β oraz zawartość tego składnika w odpadzie ϑ. Dla konkretnej rudy (przy przyjęciu, że α = constant) wyniki rozdziału na wiele produktów można traktować jako punkty na trajektorii, zlokalizowane na powierzchni wskaźnika w trójwymiarowej przestrzeni (β, ϑ, w). Przebieg trajektorii zależy od przygotowania właściwości petrograficznych i mineralogicznych rudy do procesu. Z tych powodów poszukiwanie optymalnych (potencjalnych) możliwości wzbogacania rudy jest relatywne, co można zaobserwować na przykładzie krzywych wzbogacalności Halbicha, Fuerstenau’a i Madeja. Takie krzywe są efektywnymi narzędziami oceny przebiegu procesu rozdziału (wzbogacania) i każdy z ich typów pozwala na przedstawienie efektów z innej perspektywy. Ponadto, pozwalają one również na znalezienie optymalnych warunków nadawy do prowadzenia danego procesu z celem osiągnięcia oczekiwanych wyników. Co więcej, wpływ przygotowania rudy na wyniki flotacji, sumę uzysków składnika użytecznego w koncentracie oraz uzysk reszt w odpadach zostały zaprezentowane w artykule.
Źródło:
Gospodarka Surowcami Mineralnymi; 2018, 34, 2; 55-66
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preparation of synthetic carnallite and amorphous silica from chromite beneficiation plant tailings
Wytwarzanie syntetycznego karnalitu i amorficznej krzemionki z odpadów wzbogacania rud chromitowych
Autorzy:
Top, S.
Yildirim, M.
Powiązania:
https://bibliotekanauki.pl/articles/1849686.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
synthetic carnallite
amorphous silica
mineral processing
hydrometallurgical recovery
karnalit syntetyczny
krzemionka bezpostaciowa
wzbogacanie magnetyczne
odzysk hydrometalurgiczny
Opis:
In this paper, synthetic carnallite (MgCl2 ∙ KCl ∙ 6H2O) and amorphous silica (SiO2) preparation possibilities were investigated by utilizing chromite beneficiation plant tailings which contain 3.44% chromite (Cr2O3) and 30.55% magnesium oxide (MgO) by weight. Firstly, laboratory scale high intensity wet magnetic separator was applied for removing the magnetic materials such as chromite, iron (II ) and manganese (II ) minerals in the tailings. About 85.75% of chromite, 91.22% of MnO and 64.71% of Fe2O3 were removed by single stage magnetic separation. After the magnetic separation, hydrometallurgical recovery was initiated by leaching of the tailings with hydrochloric acid (HCl). Amorphous silica particles and the other solids were separated from the leach solution by filtration. Impurities were precipitated from the leach solution by elevating the solution pH via magnesiumhydroxide (Mg(OH )2) adding. The purified magnesium chloride (MgCl2) solution was mixed with potassium hydroxide (KOH ) at stoichiometric ratio. According to the XRD and chemical analysis, the synthetic carnallite was synthesized by controlled heating of this solution at 90–100°C. Also, the amorphous silica with 96.5% SiO2 content and 84.38% recovery yield was obtained by additional magnetic separation treatment.
W artykule przedstawiono badania możliwości wytwarzania karnalitu (MgCl2 • KCl• 6H2O) i bezpostaciowej krzemionki (SiO2) z odpadów z zakładów procesu wzbogacania chromitów, które zawierają 3,44% wag. chromitu (Cr2O3) i 30,55% wag. tlenku magnezu (MgO). W skali laboratoryjnej do usuwania materiałów magnetycznych, takich jak: chromit, żelazo (II) i minerały manganowe (II) zastosowano wzbogacanie mokre w separatorach magnetycznych o wysokiej intensywności. Około 85,75% chromitu, 91,22% MnO i 64,71% Fe2O3 usunięto metodą jednoetapowej separacji magnetycznej. Po wzbogacaniu magnetycznym odzysk hydrometalurgiczny został zainicjowany przez ługowanie odpadów kwasem chlorowodorowym (HCl). Amorficzne cząstki krzemionki i inne substancje stałe oddzielono od roztworu ługującego przez filtrację. Z roztworu ługowanego wytrąciły się zanieczyszczenia przez wzrost pH dzięki zawartemu wodorotlenkowi magnezu (Mg(OH)2). Oczyszczony roztwór chlorku magnezu (MgCl2) zmieszano z wodorotlenkiem potasu (KOH ) w stosunku stechiometrycznym. Zgodnie z XRD i analizą chemiczną, syntetyczny karnalit syntetyzowano przez kontrolowane ogrzewanie tego roztworu w temperaturze 90–100°C. Również odzysk 84,38% amorficznej krzemionki o zawartości 96,5% SiO2 uzyskano przez dodatkowe magnetyczne wzbogacanie.
Źródło:
Gospodarka Surowcami Mineralnymi; 2017, 33, 2; 5-23
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies