Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "cadmium removal" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Metody usuwania jonów kadmu i ołowiu z roztworów wodnych
Methods of cadmium and lead ions removal from aqueous solutions
Autorzy:
Kasprzyk, P.
Sanak-Rydlewska, S.
Powiązania:
https://bibliotekanauki.pl/articles/394659.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wymiana jonowa
jony kadmu
jony ołowiu
Purolite C160
ion exchange process
cadmium ions
lead ions
Opis:
W pracy zostaną przedstawione metody eliminacji jonów kadmu i ołowiu z roztworów wodnych. Wśród nich wymiana jonowa staje się coraz popularniejszą metodą usuwania zanieczyszczeń ze ścieków przemysłowych. Za tą metodą przemawiają: prostota procesu, niska energochłonność oraz możliwość selektywnego rozdziału zanieczyszczeń. Wymieniacz jonowy używany w procesie można wielokrotnie stosować, bowiem można go poddawać regeneracji. Stosowanie kolumn jonowymiennych umożliwia także budowę modułową linii technologicznej oczyszczania ścieków oraz szybką wymianę modułów według potrzeb technologicznych i składu ścieków. Wymianę jonową można rozpatrywać jako proces membranowy, gdzie membraną jest powierzchnia ziarna – będąca selektywnie przepuszczalną dla wymienianych jonów. W artykule przedstawiono badania laboratoryjne dotyczące wpływu wybranych parametrów procesu na wydajność wymiany jonowej dla jonów kadmu i ołowiu. Pierwiastki te według polskiego prawodawstwa uznane są za substancje szczególnie szkodliwe i mają działanie kancero- i mutagenne. Najwyższa koncentracja tych pierwiastków występuje na terenach uprzemysłowionych oraz na terenach miejskich. Mogą one pochodzić z przemysłu metalurgicznego, produkcji baterii i akumulatorów, ze spalania paliw kopalnych lub produkcji tworzyw sztucznych. Emisja kadmu i ołowiu do środowiska wodnego odbywa się poprzez odprowadzanie wód kopalnianych czy ścieków z przemysłu hydrometalurgicznego lub z galwanizerni. Badania własne wskazują, że eliminacja jonów Pb i Cd najkorzystniej zachodzi w roztworach o pH około 4 i utrzymuje się na wysokim poziomie w zakresie kwaśnego środowiska. Jonit Purolite C-160 umożliwia osiągnięcie współczynnika wydzielania (X) około 99% dla kadmu – tabela 1, natomiast współczynnik ten dla jonów ołowiu nie przekracza 97% – tabela 2.
This article presents the methods of cadmium and lead ions removal from aqueous solutions. The ion exchange method is becoming a more and more popular method of removing impurities from wastewater. The main advantages of this method are: process simplicity, low energy consumption and the possibility of the selective separation of pollutants. The ion exchanger used in the process could be regenerated, therefore, it could be used repeatedly. The use of ion-exchange columns also allows for the modular construction of the process line and the rapid replacement of modules according to the technological needs and composition of the wastewater. Ion exchange can be seen as a membrane process in which the grain surface acts as a membrane – which is selectively permeable to the exchanged ions. The article presents laboratory studies on the influence of the ion exchange process parameters on the efficiency of cadmium and lead ion exchange. These elements are suspected of carcinogenicity and teratogenicity, and according to Polish Legislation, are considered to be harmful substances. The highest concentration of these elements occurs in industrialized areas and in urban areas. They may come from the hydrometallurgical industry, the production of batteries and accumulators from the burning of fossil fuels and the production of plastics. The emission of cadmium and lead into the aquatic environment is done through the discharge the mine water and wastewater from the hydrometallurgical industry and from electroplating. Experiments show that the elimination of Pb and Cd ions preferably occurs in aqueous solutions with a pH around 4. Ion exchange resin Purolite C-160 allows a removal coefficient (X) in the range of about 99% for cadmium to be achieved – Table 5.1, while the same coefficient for lead ions does not exceed 97% – Table 5.2.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2016, 94; 205-215
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Removal of lead, cadmium and copper ions from aqueous solutions by using ion exchange resin C 160
Usuwanie jonów ołowiu, kadmu i miedzi z roztworów wodnych za pomocą żywicy jonowymiennej C 160
Autorzy:
Bożęcka, A.
Orlof-Naturalna, M.
Sanak-Rydlewska, S.
Powiązania:
https://bibliotekanauki.pl/articles/216825.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
ion-exchange resin
ion exchange
lead
cadmium
copper ions
jonit
wymiana jonowa
jony ołowiu
jony kadmu
jony miedzi
Opis:
Industrial waste solutions may contain toxic Pb, Cu, Cd and other metal ions. These ions may also be components of leachates in landfills of ores. The toxicity of the ionic forms of these metals is high. For this reason the paper presents the results of studies on one of the methods to reduce their concentration in aqueous solutions. The article presents the results of studies on the removal of Pb2+, Cd2+ and Cu2+ ions from model aqueous solutions with synthetic ion exchange resin C 160 produced by Purolite. The investigated ion exchanger contains sulfonic acid groups (–SO3H) in its structure and is a strongly acidic cation-exchange resin. The range of the studied initial concentrations of the Pb2+, Cd2+ and Cu2+ ions in the solutions was from 6.25 mg/L to 109.39 mg/L. The results confirmed that the used ion exchange resin C160 efficiently removes the above-mentioned ions from the studied solutions. The highest degree of purification was achieved in lead solutions for the assumed range of concentrations and conditions of the ion exchange process. It reached 99.9%. In the case of other solutions, the ion exchange process occurs with lower efficiency, however it remains high and amounts to over 90% for all the ions. The results of research were interpreted on the basis of the Langmuir adsorption model. For each studied ion, sorption capacity of the ion exchange resin increases until the saturation and equilibrium state is reached. Based on the interpretation of the Langmuir equation coefficients, an indication can be made that the studied ion exchange resin has a major sorption capacity towards the copper ions. In their case, the highest value of constant qmax was obtained in the Langmuir isotherm. For Cu2+ ions it was 468.42 mg/g. For Pb2+ and Cd2+ ions, this parameter reached the values of 112.17 mg/g and 31.76 mg/g, respectively. Ion exchange resin C 160 shows the highest affinity for the Pb2+ ions. In this case, the achieved value of coefficient b is highest and equals 1.437 L/mg.
Roztwory odpadowe zawierające m.in. jony metali Pb, Cu, Cd i inne powstają w przemyśle elektrochemicznej obróbki metali, w przemyśle przeróbki rud metali nieżelaznych, a także mogą być składnikiem odcieków ze składowisk odpadów tych rud. Toksyczność jonowych form tych metali jest znaczna, stąd w pracy podano wyniki badań jednego ze sposobów obniżenia ich koncentracji w roztworach wodnych. W artykule podano wyniki badań dotyczących usuwania jonów Pb2+, Cd2+ i Cu2+ z modelowych roztworów wodnych za pomocą syntetycznej żywicy jonowymiennej C 160 firmy Purolite. Badany jonit zawiera w swojej strukturze grupy sulfonowe (–SO3H) i należy do silnie kwaśnych kationitów. Zakres badanych stężeń początkowych jonów Pb2+, Cd2+ i Cu2+ w roztworach wynosił od 6,25 mg/dm3 d o 109,38 m g/dm3. Otrzymane wyniki potwierdziły, że wykorzystana żywica jonowymienna C160 skutecznie usuwa wymienione jony z badanych roztworów. Dla przyjętego zakresu stężeń i warunków procesu wymiany jonowej, największy stopień oczyszczenia roztworów osiągnięto dla ołowiu. Wynosił on 99,9%. W przypadku pozostałych roztworów wymiana jonowa zachodzi z wydajnością niższą, ale wysoką i wynosi dla wszystkich jonów ponad 90%. Wyniki badań zinterpretowano opierając się na modelu adsorpcji Langmuira. Dla każdego badanego jonu pojemność sorpcyjna jonitu wzrasta, aż do osiągnięcia wysycenia i stanu równowagi. Z interpretacji współczynników równania Langmuira wynika, że badany jonit charakteryzuje się największymi zdolnościami sorpcyjnymi w stosunku do jonów miedzi. W ich przypadku otrzymano największą wartość stałej qmax izotermy Langmuira. Dla jonów Cu2+ wyniosła ona 468,42 mg/g. Dla jonów Pb2+ i Cd2+ parametr ten przyjął odpowiednio wartości 112,17 mg/g i 31,76 mg/g. Jonit C160 wykazuje największe powinowactwo w stosunku do jonów Pb2+. W tym przypadku otrzymana wartość współczynnika b jest największa i równa 1,437 dm3/mg.
Źródło:
Gospodarka Surowcami Mineralnymi; 2016, 32, 4; 129-139
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies