Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Yan, Zheng" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Association of SRAP markers with juvenile wood basic density and growth traits in Cunninghamia lanceolata (Lamb.) Hook
Autorzy:
Hu, Dehuo
Su, Yan
Wu, Shujuan
Wu, Jiezhen
Wang, Runhui
Yan, Shu
Wei, Ruping
Zheng, Huiquan
Powiązania:
https://bibliotekanauki.pl/articles/956957.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Dendrologii PAN
Tematy:
chinese fir
srap
diversity
wood basic density
association analysis
Opis:
Application of sequence-related amplified polymorphism (SRAP) markers to unravel variations and relationships with biological and morphological traits has been reported in a variety of plant species, and their potential for breeding has also been highlighted. (1) Assess the diversity level of a Cunninghamia lanceolata (Chinese fir) genetic panel based on phenotypic traits and SRAP markers, (2) identify SRAP loci linked to juvenile wood basic density (JWBD) and growth traits, and (3) address the overlap of the trait-associated SRAP markers during the juvenile and mature stages of this species. A total of 227 Chinese fir genotypes were subjected to phenotype, SRAP genotyping, and marker-trait association analyses. A total of 564 unambiguous SRAP bands and 558 polymorphic loci were identified from the genotypes. The overall percentage of polymorphic bands, polymorphism information content, Nei’s gene diversity, and Shannon’s Information Index were 98.9%, 0.2576, 0.3196 and 0.4838, respectively. An analysis of molecular variance further demonstrated that the genotypes varied significantly at SRAP polymorphisms (p < 0.01). A wide genetic distance span from 0.0531 to 0.9097 was also observed; most (94.9%) fell within the range of 0.3000–0.6999. An association analysis based on general linear model (GLM) and mixed linear model (MLM) unraveled 21, 26, 25, and 19 marker-trait associations for JWBD, height (H), diameter at breast height (DBH, 1.3 m) and stem volume (V), respectively. These marker-trait associations corresponded to 64 different SRAP markers; 46 of these were linked to only one trait, while the other 18 markers appeared to be associated with more than one trait but limited to growth traits. Overall, the SRAP markers represented R2 (percentage of the phenotypic variation explained by marker) values of 1.7–9.2% for the GLM and 1.7–5.6% for the MLM. Strikingly, the significant trait-associated marker list seemed to be rather different from that of the previous study performed on mature traits (WBD, H, DBH and V), except for overlap of two markers. This study demonstrated an association of SRAP markers with JWBD and growth traits in Chinese fir. The results further our understanding of the genetic basis of the Chinese fir WBD and growth traits at the juvenile stage.
Źródło:
Dendrobiology; 2018, 79; 111-118
1641-1307
Pojawia się w:
Dendrobiology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Global transcriptome analysis reveals genes associated with seedling advance growth traits in a selfed family of Chinese fir (Cunninghamia lanceolata)
Autorzy:
Deng, H.
Hu, D.
Wei, R.
Yan, S.
Wang, R.
Zheng, H.
Powiązania:
https://bibliotekanauki.pl/articles/2130183.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Dendrologii PAN
Tematy:
Chinese fir
selfing
RNA-Seq
growth trait
hub gene
Opis:
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is a major timber conifer species in southern China. In this study, we aimed to capture the rarely advanced phenomenon for selfing in this species and illustrated the underlying molecular mechanism, especially the hub gene-regulated networks and pathways, by global transcriptome analysis assays (RNA-Seq). Self-pollination trials revealed a wide variation of selfing effects among parents. Parent cx569 produced a selfed family with the best growth performance at the seedling stage. The growth-based extremely advanced (AD) (n=3) and depressed (DE) variants (n=3; different types) were then subjected to comparative RNA-Seq. The transcriptome data revealed more than 5000 differentially expressed genes (DEGs) for each comparison group (AD versus DE). Weighted gene co-expression network analysis (WGCNA) further identified more than 80 important DEGs that were significantly associated with growth traits in each comparison group. A subsequent enrichment analysis showed that the identified DEGs belonged to six main types, including xylem metabolism-related, sugar and energy metabolism-related, plant hormone signal transduction-related, stress response-related, cytochrome-related, and transcription factor genes. Ten hub genes represented by the ERF071, MYB-relate 305, WRKY6, WRKY31, PER3, LAC4, CESA8, CESA9, GID1, and PR1 genes were co-identified between AD and DE variants. These genes exhibited rather different expression patterns between AD and DE variants, especially of the transcription factor ERF071 gene that presented a low transcript level in the AD seedlings with only 4.45% activity compared to DE's. While, the plant hormone signal transduction GID1 gene was significantly upregulated in AD by about 20-fold when compared to DE's, and fold change of the lignin biosynthesis-related PER3, CESA9 and LAC4 gene expression parallel reached to 10–15 times in an upregulation pattern in AD seedlings. The set of hub gene-linked interaction networks and pathways revealed in this study may be responsible for the rarely advanced phenomenon for selfing at the seedling stage in Chinese fir.
Źródło:
Dendrobiology; 2022, 87; 27-46
1641-1307
Pojawia się w:
Dendrobiology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies