Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "non-convex optimization" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Sub-gradient algorithms for computation of extreme eigenvalues of a real symmetric matrix
Autorzy:
Yassine, A.
Powiązania:
https://bibliotekanauki.pl/articles/205834.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
problem wartości własnej
difference of convex functions
eigenvalue problems
Lagrangian duality
non-convex optimization
sub-gradient algorithms
Opis:
The computation of eigenvalues of a matrix is still of importance from both theoretical and practical points of view. This is a significant problem for numerous industrial and scientific situations, notably in dynamics of structures (e.g. Gerardin, 1984), physics (e.g. Rappaz, 1979), chemistry (e.g. Davidson, 1983), economy (e.g. Morishima, 1971; Neumann, 1946), mathematics (e.g. Golub, 1989; Chatelin, 1983, 1984, 1988). The study of eigenvalue problems remains a delicate task, which generally presents numerical difficulties in relation to its sensivity to roundoff errors that may lead to numerical unstabilities, particularly if the eigenvalues are not well separated. In this paper, new subgradient-algorithms for computation of extreme eigenvalues of a symmetric real matrix are presented. Those algorithms are based on stability of Lagrangian duality for non-convex optimization and on duality in the difference of convex functions. Some experimental results which prove the robustness and efficiency of our algorithms are provided.
Źródło:
Control and Cybernetics; 1998, 27, 3; 387-415
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convergence of Tolands critical points for sequences of D.C. functions and application to the resolution of semilinear elliptic problems
Autorzy:
Yassine, A.
Alaa, N.
Elhilali Alaoui, A.
Powiązania:
https://bibliotekanauki.pl/articles/206580.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm proksymalny
funkcje D.C.
optymalizacja niewypukła
punkt krytyczny Tolanda
semiliniowe zagadnienie eliptyczne
dc functions
non-convex optimization
normalized D.C. decomposition
proximal algorithm
semilinear elliptic problem
Toland's critical point
Opis:
We prove that if a sequence (fn)n of D.C. functions (Difference of two Convex functions) converges to a D.C. function f in some appropriate way and if un is a critical point of fn, in the sense described by Toland, and is such that (un)n converges to u, then a is a critical point of f, still in Toland's sense. We also build a new algorithm which searches for this critical point u and then apply it in order to compute the solution of a semilinear elliptic equation.
Źródło:
Control and Cybernetics; 2001, 30, 4; 405-417
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies