Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hyperbolic systems" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Time-domain decomposition for optimal control problems governed by semilinear hyperbolic systems with mixed two-point boundary conditions
Autorzy:
Krug, Richard
Leugering, Günter
Martin, Alexander
Schmidt, Martin
Weninger, Dieter
Powiązania:
https://bibliotekanauki.pl/articles/2183473.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
time-domain decomposition
optimal control
semilinear hyperbolic systems
convergence
Opis:
In this article, we study the time-domain decomposition of optimal control problems for systems of semilinear hyperbolic equations and provide an in-depth well-posedness analysis. This is a continuation of our work, Krug et al. (2021) in that we now consider mixed two-point boundary value problems. The more general boundary conditions significantly enlarge the scope of applications, e.g., to hyperbolic problems on metric graphs with cycles. We design an iterative method based on the optimality systems that can be interpreted as a decomposition method for the original optimal control problem into virtual control problems on smaller time domains.
Źródło:
Control and Cybernetics; 2021, 50, 4; 427--455
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Domain decomposition in exact controllability of second order hyperbolic systems on 1-d networks
Autorzy:
Lagnese, J.
Powiązania:
https://bibliotekanauki.pl/articles/205985.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
domain decomposition
exact controllability
one-dimensional networks
second order hyperbolic systems
Opis:
This paper is concerned with domain decomposition in exact controllability of a class of linear second order hyperbolic systems on one-dimensional graphs in [R^3] that in particular serve as descriptive models of the dynamics of various multi-link structures consisting of one-dimensional elements, such as networks of Timoshenko beams in [R^3]. We first consider a standard unconstrained optimal control problem in which the cost functional penalizes the deviation of the final state of the global problem from a given target state. A convergent domain decomposition for the optimality system associated with this problem was recently given by G. Leugering. This decomposition depends on the penalty parameter. On each edge of the graph and at each iteration level the local problem is itself the optimality system associated with an unconstrained optimal control problem in which the cost functional penalizes the deviation of the final state of the particular edge from the target state for that edge. The main purpose of this paper is to show that at each iteration level and on each edge the local optimality system converges as the penalty parameter approaches its limit and that the limit system is a domain decomposition for the problem of norm minimum exact control to the target state.
Źródło:
Control and Cybernetics; 1999, 28, 3; 531-556
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Discrete approximation of nonconvex hyperbolic optimal control problems with state constraints
Autorzy:
Chryssoverghi, I.
Bacopoulos, A.
Coletsos, J.
Kokkinis, B.
Powiązania:
https://bibliotekanauki.pl/articles/205975.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
dyskretyzacja
nieliniowy układ hiperboliczny
sterowanie optymalne
zasada minimum
discretization
existence theory
minimum principle
nonlinear hyperbolic systems
optimal control
relaxed controls
Opis:
We consider an opitmal control problem for systems defined by nonlinear hyperbolic partial differential equations with state constraints. Since no convexity assumptions are made on the data, we also consider the control problem in relaxed form. We discretize both the classical and the relaxed problenms by using a finite element method in space and a finite difference scheme in time, the controls being approximated by piecevise constant ones. We develop the existence theory and the necessary conditions for optimality, for the continous and the discrete problems. Finally, we study the behaviour in the limit of discrete optimality, admissibility and extremality properties.
Źródło:
Control and Cybernetics; 1998, 27, 1; 29-50
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies