Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "algorytm genetyczny" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Biologically inspired methods for control of evolutionary algorithms
Autorzy:
Stańczak, J.
Powiązania:
https://bibliotekanauki.pl/articles/206262.pdf
Data publikacji:
2003
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm genetyczny
adaptacja
adaptacyjny algorytm ewolucyjny
genetic algorithms
adaptation
adaptive ewolutionary algorithms
Opis:
In this paper two methods for evolutionary algorithm control are proposed. The first one is a new method of tuning tlie probabilities of genetic operators. It is assumed in the presented approach that every member of the optimized population conducts his own ranking of genetic operators' qualities. This ranking enables computing the probabilities of execution of genetic operators. This set of probabilities is a basis of experience of every individual and according to this basis the individual chooses the operator in every iteration of the algorithm. Due to this experience one can maximize the chances of his offspring to survive. The second part of the paper deals with a self-adapting method of selection of individuals to a subsequent generation. Methods of selection applied in the evolutionary algorithms are usually inspired by nature and prefer solutions where the main role is played by randomness, competition and struggle among individuals. In the case of evolutionary algorithms, where populations of individuals are usually small, this causes a premature convergence to local minima. In order to avoid this drawback I propose to apply an approach based rather on an agricultural technique. Two new methods of object selection are proposed: a histogram selection and a mixed selection. The methods described were tested using examples based on scheduling and TSP.
Źródło:
Control and Cybernetics; 2003, 32, 2; 411-433
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Grammars in genetic programming
Autorzy:
Wieczorek, W.
Czech, Z.
Powiązania:
https://bibliotekanauki.pl/articles/205856.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm genetyczny
gramatyka
genetic algorithms
grammars
strongly typed genetic programming
Opis:
The work consists of two parts. In the first part the idea of genetic programming is presented and the basic elements of a genetic programming system are described. In the second part, considering a selected example, we describe the results of investigations of the influence of program grammars on the efficiency of genetic programming.
Źródło:
Control and Cybernetics; 2000, 29, 4; 1019-1030
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stability criteria for large-scale time-delay systems; the LMI approach and the Genetic Algorithms
Autorzy:
Chen, J.- D.
Powiązania:
https://bibliotekanauki.pl/articles/969948.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm genetyczny
delay-dependent criterion
large-scale systems
linear matrix inequality
genetic algorithms
Opis:
This paper addresses the asymptotic stability analysis problem for a class of linear large-scale systems with time delay in the state of each subsystem as well as in the interconnections. Based on the Lyapunov stability theory, a delay-dependent criterion for stability analysis of the systems is derived in terms of a linear matrix inequality (LMI). Finally, a numerical example is given to demonstrate the validity of the proposed result.
Źródło:
Control and Cybernetics; 2006, 35, 2; 291-301
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Supplementary crossover operator for genetic algorithms based on the center-of-gravity paradigm
Autorzy:
Angelov, P.
Powiązania:
https://bibliotekanauki.pl/articles/205842.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm genetyczny
mutacja
środek bezwładności
center of gravity
crossover
genetic algorithms
mutation
selection operators
Opis:
A supplementary crossover operator for genetic algorithms (GA) is proposed in the paper. It performs specific breeding between the two fittest parental chromosomes. The new child chromosome is based on the center of gravity (CoG) paradigm, taking into account both the parental weights (measured by their fitness) and their actual value. It is designed to be used in combination with other crossover and mutation operators (it applies to the best fitted two parental chromosomes only) both in binary and real-valued (evolutionary) GA. Analytical proof of its ability to improve the result is provided for the simplest case of one variable and when the elitist selection strategy is used. The new operator is validated with a number of usually used numerical test functions as well as with a practical example of supply air temperature and flow rate scheduling in a hollow core ventilated slab thermal storage system. The tests indicate that it improves results (the speed of convergence as well as the final result) without a significant increase in computational expenses.
Źródło:
Control and Cybernetics; 2001, 30, 2; 159-176
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A generalized varying-domain optimization method for fuzzy goal programming with priorities based on a genetic algorithm
Autorzy:
Li, S. Y.
Hu, C. F.
Teng, C. J.
Powiązania:
https://bibliotekanauki.pl/articles/970454.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
rozmyte programowanie celowe
priorytet
algorytm genetyczny
fuzzy goal programming
priorities
SQP
genetic algorithm
GENOCOP III
Opis:
This paper proposes a generalized domain optimization method for fuzzy goal programming with different priorities. According to the three possible styles of the objective function, the domain optimization method and its generalization are correspondingly proposed. This method can generate the results consistent with the decision-maker's priority expectations, according to which the goal with higher priority may have higher level of satisfaction. However, the reformulated optimization problem may be nonconvex for the reason of the nature of the original problem and the introduction of the varying-domain optimization method. It is possible to obtain a local optimal solution for nonconvex programming by the SQP algorithm. In order to get the global solution of the new programming problem, the co-evolutionary genetic algorithm, called GENOCOP III, is used instead of the SQP method. In this way the decision-maker can get. the optimum of the optimization problem. We demonstrate the power of this proposed method based on genetic algorithm by illustrative examples.
Źródło:
Control and Cybernetics; 2004, 33, 4; 633-652
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Correlational parameter tuning by genetic meta-algorithm
Autorzy:
Kieś, P.
Kosiński, W.
Powiązania:
https://bibliotekanauki.pl/articles/206578.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
adaptacja
algorytm genetyczny
optymalizacja
permutacja kodowa
strojenie parametrów
adaptation
code permutation
genetic algorithm
optimization
parameter tuning
Opis:
The general problem of an off-line parameter tuning in the Binary Genetic Algorithm (BGA) is introduced. An example of such a tuning: a class of Correlational Tuning Methods (CTMs) is proposed. The main idea of a CTM is that it uses a mapping called measurement function as an assessment of the BGA's effciency. An example of a measurement function is described and two examples of CTMs: a modified "trials and errors" method and a modified genetic meta-algoritlm (metaBGA) are shown. Finally, experimental results with the metaBGA for four kinds of test fitness functions, where the code permutation is the tuned parameter, are presented.
Źródło:
Control and Cybernetics; 2000, 29, 4; 1031-1042
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal design of model following control with genetic algorithm
Autorzy:
Zhang, X.
Yamane, Y.
Powiązania:
https://bibliotekanauki.pl/articles/205732.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm genetyczny
model optymalny
sprzężenie do przodu
sprzężenie zwrotne
feedback
feedforward
genetic algorithm
model following control (MFC)
optimal design
Opis:
This paper presents a genetic algorithm for the optimal design of model following control in which there are nonlinear disturbance and unceratin parameters, where the output is regulated to follow the output of reference model. The effectiveness of the proposed algorithm is illustrated by numerical examples.
Źródło:
Control and Cybernetics; 2001, 30, 1; 71-79
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization using chaotic neural network and its application to lighting design
Autorzy:
Nanba, R.
Hasegawa, M.
Nishita, T.
Aihara, K.
Powiązania:
https://bibliotekanauki.pl/articles/205753.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm genetyczny
denaturacja symulowana
grafika komputerowa
metoda energetyczna
model świetlny
sieć neuronowa chaotyczna
zagadnienie optymalizacji kombinatorycznej
chaotic neural networks
combinatorial optimization problem
computer graphics
genetic algorithm
lighting design
radiosity method
simulated annealing
Opis:
We have developed a chaotic neurodynamical searching method for solving the lighting design problems. The goal of this method is to design interior lighting that satisfies required illuminance distribution. We can obtain accurate illuminance distribution by using the radiosity method to calculate interreflection of lights. We formulate the lighting design problem that considers the interreflection of lights as a combinatorial optimization problem, and construct a chaotic neural network which searches the optimum solution of the lighting design problem. The calculated illuminance distribution is visualized using computer graphics. We compare this optimization method with the conventional neural network with gradient dynamics, simulated annealing, and the genetic algorithm, and clarify the effectiveness of the proposed method based on the chaotic neural network.
Źródło:
Control and Cybernetics; 2002, 31, 2; 249-269
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies