Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mańdziuk, J." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Neural networks for the N-Queens Problem : a review
Autorzy:
Mańdziuk, J.
Powiązania:
https://bibliotekanauki.pl/articles/205945.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
optymalizacja kombinatoryczna
problem n-hetmanów
sieć Hopfielda
sieć neuronowa
combinatorial optimization
Hopfield network
N-Queens Problem
neural networks
Opis:
Neural networks can be successfully applied to solving certain types of combinatorial optimization problems. In this paper several neural approaches to solving constrained optimization problems are presented and their properties discussed. The main goal of the paper is to present various improvements to the wellknown Hopfield models which are intensively used in combinatorial optimization domain. These improvements include deterministic modifications (binary Hopfield model with negative self-feedback connections and Maximum Neural Network model), stochastic modifications (Gaussian Machine), chaotic Hopfield-based models (Chaotic Neural Network and Transiently Chaotic Neural Network), hybrid approaches (Dual-mode Dynamic Neural Network and Harmony Theory approach) and finally modifications motivated by digital implementation feasibility (Strictly Digital Neural Network). All these models are compared based on a commonly used benchmark prohlem - the N-Queens Problem (NQP). Numerical results indicate that each of modified Hopfield models can be effectively used to solving the NQP. Coonvergence to solutions rate of these methods is very high - usually close to 100%. Experimental time requirements are generally low - polynomial in most casos. Some discussion of non-neural, heuristic approaches to solving the NQP is also presented in the paper.
Źródło:
Control and Cybernetics; 2002, 31, 2; 217-248
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chaotic time series prediction with feed-forward and recurrent neural nets
Autorzy:
Mańdziuk, J.
Mikołajczak, R.
Powiązania:
https://bibliotekanauki.pl/articles/206741.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
odwzorowanie logistyczne
predykcja
sieć neuronowa
szereg czasowy chaotyczny
chaotic time series
logistic map
neural networks
prediction
Opis:
The results of experimental comparison between several neural architectures for short-term chaotic time series prediction problem are presented. Selected feed-forward architectures (Multi-layer Perceptrons) are compared with the most popular recurrent ones (Elman, extended Elman, and Jordan) on the basis prediction accuracy, training time requirements and stability. The application domain is logistic map series - the well known chaotic time series predition benchmark problem. Simulation results suggest that in terms of prediction accuracy feed-forward networks with two hidden layers are superior to other tested architectures. On the other hand feed-forward architectures are, in general, more demanding in terms of training time requirements. Results also indicate that with a careful choice of learning parameters all tested architectures tend to generate stable (repeatable) results.
Źródło:
Control and Cybernetics; 2002, 31, 2; 383-406
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies