Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sharma, M." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Estimating parameters of empirical infiltration models from the global dataset using machine learning
Autorzy:
Kim, S.
Karahan, G.
Sharma, M.
Pachepsky, Y.
Powiązania:
https://bibliotekanauki.pl/articles/2083049.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
infiltration modelling
random forest
Soil Water
Infiltration Global database
Opis:
It is beneficial to develop pedotransfer relationships to estimate infiltration equation coefficients in site-specific conditions from readily available data. No systematic studies have been published concerning the relationships between the accuracy of the infiltration equation and the accuracy of the predicted coefficients in this equation. The objective of this work was to test the hypothesis that, for the same infiltration data, the accuracy of pedotransfer predictions for coefficients in an infiltration equation is greater for the infiltration equation that performs better. The hypothesis was tested using the commonly employed Horton and Mezencev (modified Kostiakov) infiltration equations with data from the Soil Water Infiltration Global database. The random forest machine learning algorithm was used to develop the pedotransfer model. The Horton and the Mezencev models performed better with 928 and 758 datasets, respectively. The accuracy of the estimates of the infiltration equation coefficients did not differ substantially between the estimates obtained from all data and from the data where the infiltration equation had lower root-mean-squared error values. The root-mean-squared error values of the pedotransfer estimates decreased by 2 to 25% when only datasets with the same infiltration measurement method were considered. The development of predictive pedotransfer equations with the data obtained from the same infiltration measurement method is recommended.
Źródło:
International Agrophysics; 2021, 35, 1; 73-81
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Compression loading behaviour of sunflower seeds and kernels
Autorzy:
Selvam, T.A.
Manikantan, M.R.
Chand, T.
Sharma, R.
Seerangurayar, T.
Powiązania:
https://bibliotekanauki.pl/articles/25294.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
compression loading
sunflower
seed
kernel
rupture energy
moisture content
Opis:
The present study was carried out to investigate the compression loading behaviour of five Indian sunflower varieties (NIRMAL-196, NIRMAL-303, CO-2, KBSH-41, and PSH-996) under four different moisture levels (6-18% d.b). The initial cracking force, mean rupture force, and rupture energy were measured as a function of moisture content. The observed results showed that the initial cracking force decreased linearly with an increase in moisture content for all varieties. The mean rupture force also decreased linearly with an increase in moisture content. However, the rupture energy was found to be increasing linearly for seed and kernel with moisture content. NIRMAL-196 and PSH-996 had maximum and minimum values of all the attributes studied for both seed and kernel, respectively. The values of all the studied attributes were higher for seed than kernel of all the varieties at all moisture levels. There was a significant effect of moisture and variety on compression loading behaviour.
Źródło:
International Agrophysics; 2014, 28, 4
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies